Skip to main content

Regulation of Splicing by Protein Phosphorylation

  • Chapter
Nuclear pre-mRNA Processing in Plants

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 326))

Most eukaryotic messenger RNAs are transcribed as precursors that necessitate specific and exact processing of intron boundaries. Furthermore, the choice of these boundaries appears to be fluid and adaptive to the rate of transcription and the developmental and physiological state of the cell. A central regulator of splicing reactions and choice are kinases that work through phosphorylation of specific factors like RNA polymerase II, which influences the pace of transcription and of SR splicing factors. While very different in their mechanisms both regulatory pathways will impact on splicing site choice. This chapter summarizes the biology of splicing-related phosphorylation activity, emphasizing plant-specific aspects in relation to the metazoan counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali GS, Reddy ASN (2006) ATP, phosphorylation and transcription regulate the mobility of plant splicing factors. J Cell Sci 119:3527–3538

    Article  PubMed  CAS  Google Scholar 

  • Azubel M, Habib N, Sperling R, Sperling J (2006) Native spliceosomes assemble with pre-mRNA to form supraspliceosomes. J Mol Biol 356:955–966

    Article  PubMed  CAS  Google Scholar 

  • Barroco RM, De Veylder L, Magyar Z, Engler G, Inze D, Mironov V (2003) Novel complexes of cyclin–dependent kinases and a cyclin–like protein from Arabidopsis thaliana with a function unrelated to cell division. Cell Mol Life Sci 60:401–412

    Article  PubMed  CAS  Google Scholar 

  • Batsche E, Yaniv M, Muchardt C (2006) The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13:22–29

    Article  PubMed  CAS  Google Scholar 

  • Bender J, Fink GR (1994) Afc1, a Lammer kinase from Arabidopsis thaliana, activates Ste12-dependent processes in yeast. Proc Natl Acad Sci USA 91:12105–12109

    Article  PubMed  CAS  Google Scholar 

  • Blaustein M, Pelisch F, Tanos T, Munoz MJ, Wengier D, Quadrana L, Sanford JR, Muschietti JP, Kornblihtt AR, Caceres JF, Coso OA, Srebrow A (2005) Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol 12:1037–1044

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois CF, Lejeune F, Stevenin J (2004) Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. Prog Nucl Acid Res Mol Biol 78:37–88

    Article  CAS  Google Scholar 

  • Bourquin JP, Stagljar I, Meier P, Moosman P, Silke J, Baechi T, Georgiev O, Schaffner W (1997) A serine/arginine–rich nuclear matrix cyclophilin interacts with the C–terminal domain of RNA polymerase II. Nucl Acids Res 25:2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Caceres JF, Screaton GR, Krainer AR (1998) A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Gene Dev 12:55–66

    Article  PubMed  CAS  Google Scholar 

  • Colwill K, Pawson T, Andrews B, Prasad J, Manley JL, Bell JC, Duncan PI (1996a) The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J 15:265–275

    PubMed  CAS  Google Scholar 

  • Colwill K, Feng LL, Yeakley JM, Gish GD, Caceres JF, Pawson T, Fu XD (1996b) SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine–rich splicing factors. J Biol Chem 271:24569–24575

    Article  PubMed  CAS  Google Scholar 

  • Daoud R, Mies G, Smialowska A, Olah L, Hossmann KA, Stamm S (2002) Ischemia induces a translocation of the splicing factor tra2–β1 and changes alternative splicing patterns in the brain. J Neurosci 22:5889–5899

    PubMed  CAS  Google Scholar 

  • Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 97:1908–1913

    Article  PubMed  CAS  Google Scholar 

  • Ding JH, Zhong XY, Hagopian JC, Cruz MM, Ghosh G, Feramisco J, Adams JA, Fu XD (2006) Regulated cellular partitioning of SR protein–specific kinases in mammalian cells. Mol Biol Cell 17:876–885

    Article  PubMed  CAS  Google Scholar 

  • Docquier S, Tillemans V, Deltour R, Motte P (2004) Nuclear bodies and compartmentalization of pre–mRNA splicing factors in higher plants. Chromosoma 112:255–266

    Article  PubMed  CAS  Google Scholar 

  • Du C, McGuffin ME, Dauwalder B, Rabinow L, Mattox W (1998) Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila. Mol Cell 2:741–750

    Article  PubMed  CAS  Google Scholar 

  • Dubourg B, Kamphausen T, Weiwad M, Jahreis G, Feunteun J, Fischer G, Modjtahedi N (2004) The human nuclear SRcyp is a cell cycle–regulated cyclophilin. J Biol Chem 279:22322–22330

    Article  PubMed  CAS  Google Scholar 

  • Fang YD, Hearn S, Spector DL (2004) Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis. Mol Biol Cell 15:2664–2673

    Article  PubMed  CAS  Google Scholar 

  • Farrona S, Hurtado L, Bowman JL, Reyes JC (2004) The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering. Development 131:4965–4975

    Article  PubMed  CAS  Google Scholar 

  • Fayard E, Tintignac LA, Baudry A, Hemmings BA (2005) Protein kinase B/Akt at a glance. J Cell Sci 118:5675–5678

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sacristan A, Fernandez-Nestosa MJ, Hernandez P, Schvartzman JB, Krimer DB (2005) Protein kinase clk/STY is differentially regulated during erythroleukemia cell differentiation: a bias toward the skipped splice variant characterizes postcommitment stages. Cell Res 15:495–503

    Article  PubMed  CAS  Google Scholar 

  • Golovkin M, Reddy ASN (1999) An SC35–like protein and a novel serine/arginine–rich protein interact with Arabidopsis U1–70K protein. J Biol Chem 274:36428–36438

    Article  PubMed  CAS  Google Scholar 

  • Gullerova M, Barta A, Lorkovic´ ZJ (2006) AtCyp59 is a multidomain cyclophilin from Arabidopsis thaliana that interacts with SR proteins and the C–terminal domain of the RNA polymerase II. RNA 12:631–643

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Stiller JW (2004) Comparative genomics of cyclin–dependent kinases suggest co–evolution of the RNAP IIC–terminal domain and CTD–directed CDKs. BMC Genomics 5:69

    Article  PubMed  Google Scholar 

  • Hertel KJ, Graveley BR (2005) RS domains contact the pre–mRNA throughout spliceosome assembly. Trends Biochem Sci 30:115–118

    Article  PubMed  CAS  Google Scholar 

  • Howe KJ, Kane CM, Ares M (2003) Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9:993–1006

    Article  PubMed  CAS  Google Scholar 

  • Huang, YQ, Yario TA, Steitz JA (2004) A molecular link between SR protein dephosphorylation and mRNA export. Proc Natl Acad Sci USA 101:9666–9670

    Article  PubMed  CAS  Google Scholar 

  • Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K (2004) Genome–wide analysis of alternative pre–mRNA splicing in Arabidopsis thaliana based on full–length cDNA sequences. Nucl Acids Res 32:5096–5103

    Article  PubMed  CAS  Google Scholar 

  • Kornblihtt AR (2006) Chromatin, transcript elongation and alternative splicing. Nat Struct Mol Biol 13:5–7

    Article  PubMed  CAS  Google Scholar 

  • Kornblihtt AR, De la Mata M, Fededa JP, Munoz MJ, Nogues G (2004) Multiple links between transcription and splicing. RNA 10:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Lai MC, Lin RI, Tarn WY (2003) Differential effects of hyperphosphorylation on splicing factor SRp55. Biochem J 371:937–945

    Article  PubMed  CAS  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: A model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  PubMed  CAS  Google Scholar 

  • Lis JT, Mason P, Peng J, Price DH, Werner J (2000) P–TEFb kinase recruitment and function at heat shock loci. Gene Dev 14:792–803

    PubMed  CAS  Google Scholar 

  • Lopato S, Kalyna M, Dorner S, Kobayashi R, Krainer AR, and Barta A (1999) atSRp30, one of two SF2/ASF–like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Gene Dev 13:987–1001

    Article  PubMed  CAS  Google Scholar 

  • Lopato S, Forstner C, Kalyna M, Hilscher J, Langhammer U, Indrapichate K, Lorkovic´ ZJ, Barta A (2002) Network of interactions of a novel plant–specific Arg/Ser–rich protein, atRSZ33, with atSC35–like splicing factors. J Biol Chem 277:39989–39998

    Article  PubMed  CAS  Google Scholar 

  • Lorkovic´ ZJ, Barta A (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA–binding proteins from the flowering plant Arabidopsis thaliana. Nucl Acids Res 30:623–635

    Article  PubMed  Google Scholar 

  • Lorkovic´ ZJ, Lopato S, Pexa M, Lehner R, Barta A (2004) Interactions of Arabidopsis RS domain containing cyclophilins with SR proteins and U1 and U11 small nuclear ribonucleoprotein–specific proteins suggest their involvement in pre–mRNA splicing. J Biol Chem 279:33890–33898

    Article  PubMed  Google Scholar 

  • Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C (2002) Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14:877–888

    Article  PubMed  CAS  Google Scholar 

  • Mermoud JE, Cohen PTW, Lamond AI (1994) Regulation of mammalian spliceosome assembly by a protein–phosphorylation mechanism. EMBO J 13:5679–5688

    PubMed  CAS  Google Scholar 

  • Misteli T (2000) Cell biology of transcription and pre–mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci 113:1841–1849

    PubMed  CAS  Google Scholar 

  • Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30:13–19

    Article  PubMed  CAS  Google Scholar 

  • Morris DP, Michelotti GA, Schwinn DA (2005) Evidence that phosphorylation of the RNA polymerase II carboxyl–terminal repeats is similar in yeast and humans. J Biol Chem 280:31368–31377

    Article  PubMed  CAS  Google Scholar 

  • Ner–Gaon H, Fluhr R (2006) Whole–genome microarray in Arabidopsis facilitates global analysis of retained introns. DNA Res 13:111–121

    Article  PubMed  Google Scholar 

  • Ner–Gaon H, Halachmi R, Savaldi–Goldstein S, Rubin E, Ophir R, Fluhr R (2004) Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J 39:877–885

    Article  PubMed  Google Scholar 

  • Nestel FP, Colwill K, Harper S, Pawson T, Anderson SK (1996) RS cyclophilins: Identification of an NK–TR(1)–related cyclophilin. Gene 180:151–155

    Article  PubMed  CAS  Google Scholar 

  • Ngo JCK, Chakrabarti S, Ding JH, Velazquez–Dones A, Nolen B, Aubol BE, Adams JA, Fu XD, Ghosh G (2005) Interplay between SRPK and Clk/Sty kinases in phosphorylation of the splicing factor ASF/SF2 is regulated by a docking motif in ASF/SF2. Mol Cell 20:77–89

    Article  PubMed  CAS  Google Scholar 

  • Nogues G, Kadener S, Cramer P, Bentley D, Kornblihtt AR (2002) Transcriptional activators differ in their abilities to control alternative splicing. J Biol Chem 277:43110–43114

    Article  PubMed  CAS  Google Scholar 

  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  PubMed  CAS  Google Scholar 

  • Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase IICTD. Gene Dev 20:2922–2936

    Article  PubMed  CAS  Google Scholar 

  • Prasad J, Manley JL (2003) Regulation and substrate specificity of the SR protein kinase Clk/Sty. Mol Cell Biol 23:4139–4149

    Article  PubMed  CAS  Google Scholar 

  • Reddy ASN (2004) Plant serine/arginine–rich proteins and their role in pre–mRNA splicing. Trends Plant Sci 9:541–547

    Article  PubMed  CAS  Google Scholar 

  • Roberts GC, Gooding C, Mak H.Y, Proudfoot NJ, Smith CWJ (1998) Co–transcriptional commitment to alternative splice site selection. Nucl Acids Res 26:5568–5572

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Labourier E, Forne T, Divita G, Derancourt J, Riou JF, Antoine E, Cathala G, Brunel C, Tazi J (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381:80–82

    Article  PubMed  CAS  Google Scholar 

  • Roth MB, Zahler AM, Stolk JA (1991) A conserved family of nuclear phosphoproteins localized to sites of polymerase–II transcription. J Cell Biol 115:587–596

    Article  PubMed  CAS  Google Scholar 

  • Sanford JR, Gray NK, Beckmann K, Caceres JF (2004) A novel role for shuttling SR proteins in mRNA translation. Gene Dev 18:755–768

    Article  PubMed  CAS  Google Scholar 

  • Savaldi–Goldstein S, Sessa G, Fluhr R (2000) The ethylene–inducible PK12 kinase mediates the phosphorylation of SR splicing factors. Plant J 21:91–96

    Article  PubMed  Google Scholar 

  • Savaldi–Goldstein S, Aviv D, Davydov O, Fluhr R (2003) Alternative splicing modulation by a LAMMER kinase impinges on developmental and transcriptome expression. Plant Cell 15:926–938

    Article  PubMed  Google Scholar 

  • Sessa G, Raz V, Savaldi S, Fluhr R (1996) PK12, a plant dual–specificity protein kinase of the LAMMER family, is regulated by the hormone ethylene. Plant Cell 8:2223–2234

    Article  PubMed  CAS  Google Scholar 

  • Shen HH, Kan JLC, Green MR (2004) Arginine–serine–rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. Mol Cell 13:367–376

    Article  PubMed  CAS  Google Scholar 

  • Soret J, Gabut M, Dupon C, Kohlhagen G, Stevenin J, Pommier Y, Tazi J (2003) Altered serine/arginine–rich protein phosphorylation and exonic enhancer–dependent splicing in mammalian cells lacking topoisomerase 1. Cancer Res 63:8203–8211

    PubMed  CAS  Google Scholar 

  • Stutz F, Izaurralde E (2003) The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol 13:319–327

    Article  PubMed  CAS  Google Scholar 

  • Tazi, J, Bakkour N, Soret J, Zekri L, Hazra B, Laine W, Baldeyrou B, Lansiaux A, Bailly C (2005) Selective inhibition of topoisomerase I and various steps of spliceosome assembly by diospyrin derivatives. Mol Pharmacol 67:1186–1194

    Article  PubMed  CAS  Google Scholar 

  • Tillemans V, Dispa L, Remacle C, Collinge M, Motte P (2005) Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. Plant J 41:567–582

    Article  PubMed  CAS  Google Scholar 

  • Tillemans V, Leponce I, Rausin G, Dispa L, Motte P (2006) Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. Plant Cell 18:3218–3234

    Article  PubMed  CAS  Google Scholar 

  • van Bentem SDF, Anrather D, Roitinger E, Djamei A, Hufnagl T, Barta A, Csaszar E, Dohnal I, Lecourieux D, Hirt H (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucl Acids Res 34:3267–3278

    Article  Google Scholar 

  • Velazquez–Dones A, Hagopian JC, Ma CT, Zhong XY, Zhou HL, Ghosh G, Fu XD, Adams JA (2005) Mass spectrometric and kinetic analysis of ASF/SF2 phosphorylation by SRPK1 and Clk/Sty. J Biol Chem 280:41761–41768

    Article  PubMed  Google Scholar 

  • Verbsky ML, Richards EJ (2001) Chromatin remodeling in plants. Curr Opin Plant Biol 4:494–500

    Article  PubMed  CAS  Google Scholar 

  • Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 103:7175–7180

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: A molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  PubMed  CAS  Google Scholar 

  • Wu JY, Maniatis T (1993) Specific interactions between proteins implicated in splice–site selection and regulated alternative splicing. Cell 75:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Wu XS, Bishopric NH, Discher DJ, Murphy BJ, Webster KA (1996) Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol Cell Biol 16:1035–1046

    PubMed  CAS  Google Scholar 

  • Xiao SH, Manley JL (1998) Phosphorylation–dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J 17:6359–6367

    Article  PubMed  CAS  Google Scholar 

  • Yun B, Lee K, Farkas R, Hitte C, Rabinow L (2000) The LAMMER protein kinase encoded by the Doa locus of Drosophila is required in both somatic and germline cells and is expressed as both nuclear and cytoplasmic isoforms throughout development. Genetics 156:749–761

    PubMed  CAS  Google Scholar 

  • Yun CY, Velazquez–Dones AL, Lyman SK, Fu XD (2003) Phosphorylation-dependent and -independent nuclear import of RS domain–containing splicing factors and regulators. J Biol Chem 278:18050–18055

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Portis AR (1999) Mechanism of light regulation of Rubisco: A specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin–f. Proc Natl Acad Sci USA 96:9438–9443

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hennig L, Gruissem W (2005) Gene–expression analysis and network discovery using Genevestigator. Trends Plant Sci 10:407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fluhr, R. (2008). Regulation of Splicing by Protein Phosphorylation. In: Reddy, A.S.N., Golovkin, M. (eds) Nuclear pre-mRNA Processing in Plants. Current Topics in Microbiology and Immunology, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76776-3_7

Download citation

Publish with us

Policies and ethics