Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1253 Accesses

Abstract

High-throughput technologies of modern biology provide “molecular portraits” of tissues and have entered the field of oncology. In the present chapter, we describe tools of high-throughput expression analysis in transcriptomics and proteomics, with an emphasis on microarrays, two-dimensional electrophoresis, and mass spectrometry. Options and limitations in data production, extraction, and interpretation are outlined. Problems of sensitivity, specificity, multiple testing, and noise are discussed. As a concrete example, we review the application of these tools to the field of breast cancer, where expression analyses already contribute to individual treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessandro R, Fontana S, Kohn E, De Leo G (2005) Proteomic strategies and their application in cancer research. Tumori 91:447–455

    PubMed  CAS  Google Scholar 

  • Banks R, Selby P (2003) Clinical proteomics-insights into pathologies and benefits for patients. Lancet 362:415–416

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300

    Google Scholar 

  • Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  • Braun RJ, Kinkl N, Beer M, Ueffing M (2007) Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 389:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Breitling R (2006) Biological microarray interpretation: the rules of engagement. Biochim Biophys Acta 1759:319–327

    PubMed  CAS  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Sneddon JB, Alizadeh AA et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7

    Article  PubMed  CAS  Google Scholar 

  • Chotikacharoensuk T, Arteca RN, Arteca JM (2006) Use of differential display for the identification of touch-induced genes from an ethylene-insensitive Arabidopsis mutant and partial characterization of these genes. J Plant Physiol 163:1305–1320

    Article  PubMed  CAS  Google Scholar 

  • Conrad DH, Goyette J, Thomas PS (2008) Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening. J Gen Intern Med 23 Suppl 1:78–84

    Article  PubMed  Google Scholar 

  • Doane AS, Danso M, Lal P et al (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25:3994–4008

    Article  PubMed  CAS  Google Scholar 

  • Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147–157

    Article  PubMed  Google Scholar 

  • Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569

    Article  PubMed  CAS  Google Scholar 

  • Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T (2008) SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452:187–193

    Article  PubMed  CAS  Google Scholar 

  • Hardiman G (2004) Microarray platforms-comparisons and contrasts. Pharmacogenomics 5:487–502

    Article  PubMed  CAS  Google Scholar 

  • Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    Article  PubMed  CAS  Google Scholar 

  • Healy DA, Hayes CJ, Leonard P et al (2007) Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol 25:125–131

    Article  PubMed  CAS  Google Scholar 

  • Hondermarck H, Tastet C, El Yazidi-Belkoura I et al (2008) Proteomics of breast cancer: the quest for markers and therapeutic targets. J Proteome Res 7:1403–1411

    Article  PubMed  CAS  Google Scholar 

  • Issaq HJ, Veenstra TD (2007) The role of electrophoresis in disease biomarker discovery. Electrophoresis 28:1980–1988

    Article  PubMed  CAS  Google Scholar 

  • Jacquemier J, Ginestier C, Rougemont J et al (2005) Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res 65:767–779

    PubMed  CAS  Google Scholar 

  • Kikuchi T, Carbone DP (2007) Proteomics analysis in lung cancer: challenges and opportunities. Respirology 12:22–28

    Article  PubMed  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues: a novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    PubMed  CAS  Google Scholar 

  • Kopf E, Zharhary D (2007) Antibody arrays—an emerging tool in cancer proteomics. Int J Biochem Cell Biol 39:1305–1317

    Article  PubMed  CAS  Google Scholar 

  • Miller BA, Scoppa SM, Feuer EJ (2006) Racial/ethnic patterns in lifetime and age-conditional risk estimates for selected cancers. Cancer 106:670–682

    Article  PubMed  Google Scholar 

  • Nuyten DS, Kreike B, Hart AA et al (2006) Predicting a local recurrence after breast-conserving therapy by gene expression profiling. Breast Cancer Res 8:R62

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem250:4007–4021

    PubMed  CAS  Google Scholar 

  • Pease AC, Solas D, Sullivan EJ et al (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA: 5022–5026

    Article  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  • Rouzier R, Rajan R, Wagner P et al (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 102:8315–8320

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Medel A, Montes-Bayon M, del Rosario Fernandez de la Campa M et al (2008) Elemental mass spectrometry for quantitative proteomics. Anal Bioanal Chem 390:3–16

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Smith JC, Lambert JP, Elisma F, Figeys D (2007) Proteomics in 2005/2006: developments, applications and challenges. Anal Chem 79:4325–4343

    Article  PubMed  CAS  Google Scholar 

  • Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553

    Article  PubMed  CAS  Google Scholar 

  • Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    PubMed  CAS  Google Scholar 

  • Steemers FJ, Ferguson JA, Walt DR (2000) Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat Biotechnol 18:91–94

    Article  PubMed  CAS  Google Scholar 

  • Stranger BE, Forrest MS, Clark AG et al (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1:e78

    Article  PubMed  CAS  Google Scholar 

  • Tu Y, Stolovitzky G, Klein U (2002) Quantitative noise analysis for gene expression microarray experiments. Proc Natl Acad Sci U S A 99:14031–14036

    Article  PubMed  CAS  Google Scholar 

  • van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Scienc. 270:484–487

    Article  CAS  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  • Westfall PH, Young SS (1993) Resampling-based multiple testing: examples and methods for p-value adjustment. Wiley, New York

    Google Scholar 

  • Wingren C, Borrebaeck CA (2007) Progress in miniaturization of protein arrays-a step closer to high-density nanoarrays. Drug Discov Today 12:813–819

    Article  PubMed  CAS  Google Scholar 

  • Zahedi RP, Meisinger C, Sickmann A (2005) Two-dimensional benzyldimethyl-n-hexadecylammonium chloride/SDS-PAGE for membrane proteomics. Proteomics 5:3581–3588

    Article  PubMed  CAS  Google Scholar 

  • Zahedi RP, Moebius J, Sickmann A (2007) Two-dimensional BAC/SDS-PAGE for membrane proteomics. Subcell Biochem 43:13–20

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaindl, A., Oexle, K. (2009). Molecular Tools, Expression Profiling. In: Molls, M., Vaupel, P., Nieder, C., Anscher, M. (eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74386-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74386-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74385-9

  • Online ISBN: 978-3-540-74386-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics