Skip to main content

Inverse Bifurcation Analysis of a Model for the Mammalian G 1/S Regulatory Module

  • Conference paper
Bioinformatics Research and Development (BIRD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4414))

Included in the following conference series:

Abstract

Given a large, complex ordinary differential equation model of a gene regulatory network, relating its dynamical properties to its network structure is a challenging task. Biologically important questions include: what network components are responsible for the various dynamical behaviors that arise? can the underlying dynamical behavior be essentially attributed to a small number of modules? In this paper, we demonstrate that inverse bifurcation analysis can be used to address such inverse problems. We show that sparsity-promoting regularization strategies, in combination with numerical bifurcation analysis, can be used to identify small sets of ”influential” submodules and parameters within a given network. In addition, hierarchical strategies can be used to generate parameter solutions of increasing cardinality of non-zero entries. We apply the proposed methods to analyze a model of the mammalian G 1/S regulatory module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)

    Article  Google Scholar 

  2. Novak, B., Tyson, J.J.: Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell. Sci. 106 ( Pt 4), 1153–1168 (1993)

    Google Scholar 

  3. Solomon, M.J.: Hysteresis meets the cell cycle. Proc. Natl. Acad. Sci. U S A 100(3), 771–772 (2003)

    Article  Google Scholar 

  4. Pomerening, J.R., Sontag, E.D.: Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell. Biol. 5(4), 346–351 (2003)

    Article  Google Scholar 

  5. Pomerening, J.R., Kim, S.Y.: Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122(4), 565–578 (2005)

    Article  Google Scholar 

  6. Csikasz-Nagy, A., Battogtokh, D., Chen, K.C., Novak, B., Tyson, J.J.: Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys. J. 90(12), 4361–4379 (2006)

    Article  Google Scholar 

  7. Swat, M., Kel, A., Herzel, H.: Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20(10), 1506–1511 (2004)

    Article  Google Scholar 

  8. Swat, M.J.: Bifurcation analysis of regulatory modules in cell biology. PhD dissertation, Humboldt-Universität Berlin (2005), http://edoc.hu-berlin.de/dissertationen/swat-maciej-2005-11-03/PDF/swat.pdf

  9. SBML file of the mammalian G 1/S regulatory module proposed by Swat et al. (2004), http://www.tbi.univie.ac.at/~raim/models/swat04/

  10. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    MATH  Google Scholar 

  11. Smolen, P., Baxter, D.A., Byrne, J.H.: Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems. Am. J. Physiol. 274(2 Pt 1), 531–542 (1998)

    Google Scholar 

  12. Hofer, T., Nathansen, H., Lohning, M., Radbruch, A., Heinrich, R.: GATA-3 transcriptional imprinting in Th2 lymphocytes: a mathematical model. Proc. Natl. Acad. Sci. U S A 99(14), 9364–9368 (2002)

    Article  Google Scholar 

  13. Coleman, M.L., Marshall, C.J., Olson, M.F.: RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat. Rev. Mol. Cell Biol. 5(5), 355–366 (2004)

    Article  Google Scholar 

  14. Santella, L., Ercolano, E., Nusco, G.A.: The cell cycle: a new entry in the field of Ca2+ signaling. Cell Mol. Life Sci. 62(21), 2405–2413 (2005)

    Article  Google Scholar 

  15. Roovers, K., Assoian, R.K.: Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22(9), 818–826 (2000)

    Article  Google Scholar 

  16. Macian, F., Lopez-Rodriguez, C., Rao, A.: Partners in transcription: NFAT and AP-1. Oncogene 20(19), 2476–2489 (2001)

    Article  Google Scholar 

  17. Macian, F., Garcia-Cozar, F., Im, S.H., Horton, H.F., Byrne, M.C., Rao, A.: Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109(6), 719–731 (2002)

    Article  Google Scholar 

  18. Schuster, S., Marhl, M., Hofer, T.: Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur. J. Biochem. 269(5), 1333–1355 (2002)

    Article  Google Scholar 

  19. Walker, S.A., Kupzig, S., Bouyoucef, D., Davies, L.C., Tsuboi, T., Bivona, T.G., Cozier, G.E., Lockyer, P.J., Buckler, A., Rutter, G.A., Allen, M.J., Philips, M.R., Cullen, P.J.: Identification of a Ras GTPase-activating protein regulated by receptor-mediated Ca2+ oscillations. EMBO J. 23(8), 1749–1760 (2004)

    Article  Google Scholar 

  20. Dolmetsch, R.E., Xu, K., Lewis, R.S.: Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392(6679), 933–936 (1998)

    Article  Google Scholar 

  21. Li, W., Llopis, J., Whitney, M., Zlokarnik, G., Tsien, R.Y.: Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392(6679), 936–941 (1998)

    Article  Google Scholar 

  22. Hajnoczky, G., Robb-Gaspers, L.D., Seitz, M.B., Thomas, A.P.: Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82(3), 415–424 (1995)

    Article  Google Scholar 

  23. Dupont, P.G., Houart, G., De Koninck, P.: Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations: a simple model. Cell Calcium 34(6), 485–497 (2003)

    Article  Google Scholar 

  24. Tomida, T., Hirose, K., Takizawa, A., Shibasaki, F., Iino, M.: NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J. 22(15), 3825–3832 (2003)

    Article  Google Scholar 

  25. Nixon, V.L., McDougall, A., Jones, K.T.: Ca2+ oscillations and the cell cycle at fertilisation of mammalian and ascidian eggs. Biol. Cell 92(3-4), 187–196 (2000)

    Article  Google Scholar 

  26. Marshall, C.J.: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2), 179–185 (1995)

    Article  Google Scholar 

  27. Murphy, L.O., Smith, S., Chen, R.H., Fingar, D.C., Blenis, J.: Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 4(8), 556–564 (2002)

    Google Scholar 

  28. Huang, C.Y.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. U S A 93(19), 10078–10083 (1996)

    Article  Google Scholar 

  29. Ferrell Jr., J.E., Machleder, E.M.: The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280(5365), 895–898 (1998)

    Article  Google Scholar 

  30. Stefanova, I., Hemmer, B., Vergelli, M., Martin, R., Biddison, W.E., Germain, R.N.: TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4(3), 248–254 (2003)

    Article  Google Scholar 

  31. Gurdon, J.B., Bourillot, P.Y.: Morphogen gradient interpretation. Nature 413(6858), 797–803 (2001)

    Article  Google Scholar 

  32. Hazzalin, C.A., Mahadevan, L.C.: MAPK-regulated transcription: a continuously variable gene switch? Nat. Rev. Mol. Cell. Biol. 3(1), 30–40 (2002)

    Article  Google Scholar 

  33. Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164(3), 353–359 (2004)

    Article  Google Scholar 

  34. Hornberg, J.J., Bruggeman, F.J., Binder, B., Geest, C.R., de Vaate, A.J., Lankelma, J., Heinrich, R., Westerhoff, H.V.: Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J. 272(1), 244–258 (2005)

    Article  Google Scholar 

  35. Bhalla, U.S., Ram, P.T., Iyengar, R.: MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297(5583), 1018–1023 (2002)

    Article  Google Scholar 

  36. Lu, J., Engl, H.W., Schuster, P.: Inverse bifurcation analysis: application to simple gene systems. Algorithms for Molecular Biology 1(11) (2006)

    Google Scholar 

  37. Conrad, E.: Bifurcation analysis and qualitative optimization of models in molecular cell biology with applications to the circadian clock. PhD dissertation, Virginia Polytechnic Institute and State University (2006), http://scholar.lib.vt.edu/theses/available/etd-04272006-1104%09/unrestricted/phd_20060510.pdf

  38. Dobson, I.: Computing a closest bifurcation instability in multidimensional parameter space. J. Nonlinear Sci. 3(3), 307–327 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mönnigmann, M., Marquardt, W.: Normal vectors on manifolds of critical points for parametric robustness of equilibrium solutions of ODE systems. J. Nonlinear Sci. 12(2), 85–112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schmidt, H., Jacobsen, E.W.: Linear systems approach to analysis of complex dynamic behaviours in biochemical networks. Systems Biology 1(1), 149–158 (2004)

    Article  Google Scholar 

  41. Indic, P., Gurdziel, K., Kronauer, R.E., Klerman, E.B.: Development of a two-dimensional manifold to represent high dimension mathematical models of the intracellular mammalian circadian clock. Journal of Biological Rhythms 21(3), 222–232 (2006)

    Article  Google Scholar 

  42. Gerdtzen, Z.P., Daoutidis, P., Hu, W.-S.: Non-linear reduction for kinetic models of metabolic reaction networks. Metabolic Engineering 6, 140–154 (2004)

    Article  Google Scholar 

  43. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Mathematics and its Applications, vol. 375, p. 321. Kluwer Academic Publishers Group, Dordrecht (1996)

    MATH  Google Scholar 

  44. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(l\sp 1\) minimization. Proc. Natl. Acad. Sci. USA 100(5), 2197–2202 (electronic) (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ramlau, R., Teschke, G.: Tikhonov replacement functionals for iteratively solving nonlinear operator equations. Inverse Problems 21(5), 1571–1592 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  48. Conn, A.T., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  49. MATLAB. http://www.mathworks.com/products/matlab/

  50. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Software 29(2), 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. MATCONT: continuation software in MATLAB, http://www.matcont.ugent.be/

  52. Systems Biology Markup Language, http://sbml.org/

  53. Mathematica, http://www.wolfram.com/products/mathematica/

  54. Shapiro, B.E., Hucka, M., Finney, A., Doyle, J.: MathSBML: a package for manipulating SBML-based biological models. Bioinformatics 20, 2829–2831 (2004)

    Article  Google Scholar 

  55. Perez-Pomares, J.M., Munoz-Chapuli, R.: Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in Metazoans. Anat. Rec. 268(3), 343–351 (2002)

    Article  Google Scholar 

  56. Korenjak, M., Brehm, A.: E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr. Opin. Genet. Dev. 15(5), 520–527 (2005)

    Article  Google Scholar 

  57. Godefroy, N., Lemaire, C., Mignotte, B., Vayssiere, J.L.: p53 and Retinoblastoma protein (pRb): a complex network of interactions. Apoptosis 11(5), 659–661 (2006)

    Article  Google Scholar 

  58. Wong, C.F., Barnes, L.M., Dahler, A.L., Smith, L., Popa, C., Serewko-Auret, M.M., Saunders, N.A.: E2F suppression and Sp1 overexpression are sufficient to induce the differentiation-specific marker, transglutaminase type 1, in a squamous cell carcinoma cell line. Oncogene 24(21), 3525–3534 (2005)

    Article  Google Scholar 

  59. Bean, J.M., Siggia, E.D., Cross, F.R.: Coherence and timing of cell cycle start examined at single-cell resolution. Mol. Cell 21(1), 3–14 (2006)

    Article  Google Scholar 

  60. Ubersax, J.A.: A noisy ’Start’ to the cell cycle. Mol. Syst. Biol. 2, 2006.0014 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sepp Hochreiter Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lu, J., Engl, H.W., Machné, R., Schuster, P. (2007). Inverse Bifurcation Analysis of a Model for the Mammalian G 1/S Regulatory Module. In: Hochreiter, S., Wagner, R. (eds) Bioinformatics Research and Development. BIRD 2007. Lecture Notes in Computer Science(), vol 4414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71233-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71233-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71232-9

  • Online ISBN: 978-3-540-71233-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics