Skip to main content

Gauge Theory, Mirror Symmetry, and the Geometric Langlands Program

  • Chapter
  • First Online:
Homological Mirror Symmetry

Part of the book series: Lecture Notes in Physics ((LNP,volume 757))

  • 2272 Accesses

Abstract

I provide an introduction to the recent work on the Montonen–Olive duality of cN=4 super-Yang–Mills theory and the Geometric Langlands Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Frenkel, “Lectures on the Langlands Program and Conformal Field Theory,” (2005) [arXiv:hep-th/0512172].

    Google Scholar 

  2. G. Laumon, “Correspondance Langlands Geometrique Pour Les Corps Des Fonctions,” Duke Math. J. 54, 309–359 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Goddard, J. Nuyts and D. I. Olive, “Gauge Theories and Magnetic Charge,” Nucl. Phys. B 125, 1 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  4. C. Montonen and D. I. Olive, “Magnetic Monopoles as Gauge Particles?,” Phys. Lett. B 72, 117 (1977).

    Article  ADS  Google Scholar 

  5. H. Osborn, “Topological Charges for N=4 Supersymmetric Gauge Theories and Monopoles of Spin 1,” Phys. Lett. B 83, 321 (1979).

    Article  ADS  Google Scholar 

  6. A. Kapustin and E. Witten, “Electric-Magnetic Duality and the Geometric Langlands Program,” (2006) [arXiv:hep-th/0604151].

    Google Scholar 

  7. S. Gukov and E. Witten, “Gauge Theory, Ramification, and the Geometric Langlands Program,” (2006) [arXiv:hep-th/0612073].

    Google Scholar 

  8. N. Dorey, C. Fraser, T. J. Hollowood and M. A. C. Kneipp, “S-Duality In N=4 Supersymmetric Gauge Theories,” Phys. Lett. B 383, 422 (1996) [arXiv:hep-th/9605069].

    Article  ADS  MathSciNet  Google Scholar 

  9. P. C. Argyres, A. Kapustin and N. Seiberg, “On S-duality for Non-Simply-Laced Gauge Groups,” J. High Energy Phys. 0606, 043 (2006) [arXiv:hep-th/0603048].

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Witten and D. I. Olive, “Supersymmetry Algebras that Include Topological Charges,” Phys. Lett. B 78, 97 (1978).

    Article  ADS  Google Scholar 

  11. A. Sen, “Dyon – Monopole Bound States, Self-Dual Harmonic Forms on the Multi-Monopole Moduli Space, and SL(2,Z) Invariance in String Theory,” Phys. Lett. B 329, 217 (1994) [arXiv:hep-th/9402032].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. Vafa and E. Witten, “A Strong Coupling Test of S-Duality,” Nucl. Phys. B 431, 3 (1994) [arXiv:hep-th/9408074].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. C. Vafa, “Geometric Origin of Montonen-Olive Duality,” Adv. Theor. Math. Phys. 1, 158 (1998) [arXiv:hep-th/9707131].

    MathSciNet  Google Scholar 

  14. E. Witten, “Topological Quantum Field Theory,” Commun. Math. Phys. 117, 353 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. N. Hitchin, “The Self-Duality Equations on the Riemann Surface,” Proc. Lond. Math. Soc. (3) 55, 59–126 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  16. E. B. Bogomolny, “Stability of Classical Solutions,” Sov. J. Nucl. Phys. 24, 449 (1976) [Yad.\ Fiz.\ 24, 861 (1976)].

    Google Scholar 

  17. K. Corlette, “Flat G-Bundles with Canonical Metrics,” J. Diff. Geom. 28, 361–382 (1988).

    MATH  MathSciNet  Google Scholar 

  18. E. Witten, “Mirror Manifolds And Topological Field Theory,” (1991) [arXiv:hep-th/9112056].

    Google Scholar 

  19. A. Kapustin, “Topological Strings on Noncommutative Manifolds,” Int. J. Geom. Meth. Mod. Phys. 1, 49 (2004) [arXiv:hep-th/0310057].

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Kapustin and Y. Li, “Topological Sigma-Models with H-Flux and Twisted Generalized Complex Manifolds,” (2004) [arXiv:hep-th/0407249].

    Google Scholar 

  21. N. Hitchin, “Generalized Calabi-Yau Manifolds,” Q. J. Math. 54, 281–308 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  22. S. K. Donaldson, “Twisted Harmonic Maps and the Self-Duality Equations,” Proc. Lond. Math. Soc. (3), 55, 127–131 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Kapustin, “Holomorphic Reduction of N = 2 Gauge Theories, Wilson-’t Hooft Operators, and S-Duality,” (2006)[arXiv:hep-th/0612119].

    Google Scholar 

  24. M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, “Topological Reduction of 4-d SYM to 2-d Sigma Models,” Nucl. Phys. B 448, 166 (1995) [arXiv:hep-th/9501096].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. T. Hausel and M. Thaddeus, “Mirror Symmetry, Langlands Duality, and the Hitchin System,” Invent. Math. 153, 197–229 (2003) [arXiv:math.AG/0205236].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. A. Strominger, S. T. Yau and E. Zaslow, “Mirror symmetry is T-duality,” Nucl. Phys. B 479, 243 (1996) [arXiv:hep-th/9606040].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. N. Hitchin, “Stable Bundles and Integrable Systems,” Duke Math. J. 54, 91–114 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Kapustin and D. Orlov, “Remarks on A-branes, Mirror Symmetry, and the Fukaya Category,” J. Geom. Phys. 48, 84 (2003) [arXiv:hep-th/0109098].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. F. Malikov, V. Schechtman, and A. Vaintrob, “Chiral De Rham Complex,” Comm. Math. Phys. 204, 439–473 (1999) [arXiv:math.AG/9803041].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. A. Kapustin, “Chiral De Rham Complex and the Half-Twisted Sigma-Model,” (2005) [arXiv:hep-th/0504074].

    Google Scholar 

  31. E. Witten, “Two-Dimensional Models with (0,2) Supersymmetry: Perturbative Aspects,” (2005) [arXiv:hep-th/0504078].

    Google Scholar 

  32. A. Kapustin and Y. Li, “Open String BRST Cohomology for Generalized Complex Branes,” Adv. Theor. [arXiv:hep-th/0501071].

    Google Scholar 

  33. K. G. Wilson, “Confinement of Quarks,” Phys. Rev. D 10, 2445 (1974).

    Article  ADS  Google Scholar 

  34. A. Kapustin, “Wilson-’t Hooft Operators in Four-Dimensional Gauge Theories And S-Duality,” Phys. Rev. D 74, 025005 (2006) [arXiv:hep-th/0501015].

    Article  ADS  MathSciNet  Google Scholar 

  35. G. ’t Hooft, “On the Phase Transition Towards Permanent Quark Confinement,” Nucl. Phys. B 138, 1 (1978); “A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories,” Nucl. Phys. B 153, 141 (1979).

    Article  ADS  Google Scholar 

  36. G. Lusztig, “Singularities, Character Formula, and a q-Analog of Weight Multiplicities,” in Analyse Et Topolgie Sur Les Espaces Singuliers II-III, Asterisque vol. 101–2, 208–229 (1981).

    Google Scholar 

  37. V. Ginzburg, “Perverse Sheaves on a Loop Group and Langlands Duality,” (1995) [arXiv:alg-geom/9511007].

    Google Scholar 

  38. I. Mirkovic and K. Vilonen, “Perverse Sheaves on Affine Grassmannians and Langlands Duality,” Math. Res. Lett. 7, 13–24 (2000) [arXiv:math.AG 9911050].

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kapustin, A. (2008). Gauge Theory, Mirror Symmetry, and the Geometric Langlands Program. In: Homological Mirror Symmetry. Lecture Notes in Physics, vol 757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68030-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68030-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68029-1

  • Online ISBN: 978-3-540-68030-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics