Skip to main content
Log in

Mirror symmetry, Langlands duality, and the Hitchin system

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Among the major mathematical approaches to mirror symmetry are those of Batyrev-Borisov and Strominger-Yau-Zaslow (SYZ). The first is explicit and amenable to computation but is not clearly related to the physical motivation; the second is the opposite. Furthermore, it is far from obvious that mirror partners in one sense will also be mirror partners in the other. This paper concerns a class of examples that can be shown to satisfy the requirements of SYZ, but whose Hodge numbers are also equal. This provides significant evidence in support of SYZ. Moreover, the examples are of great interest in their own right: they are spaces of flat SL r -connections on a smooth curve. The mirror is the corresponding space for the Langlands dual group PGL r . These examples therefore throw a bridge from mirror symmetry to the duality theory of Lie groups and, more broadly, to the geometric Langlands program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arapura, D.: Hodge theory with local coefficients and fundamental groups of varieties. Bull. Am. Math. Soc., New Ser. 20, 169–172 (1989)

    Google Scholar 

  2. Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of algebraic curves, Vol. I. Grundlehren Math. Wiss. 267. Springer 1985

  3. Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 308, 523–615 (1982)

    Google Scholar 

  4. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Batyrev, V.V., Borisov, L.A.: Mirror duality and string-theoretic Hodge numbers. Invent. Math. 126, 183–203 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Batyrev, V.V., Dais, D.: Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry. Topology 35, 901–929 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bershadsky, M., Johansen, A., Sadov, V., Vafa, C.: Topological reduction of 4D SYM to 2D σ-models. Nucl. Phys. B 448, 166–186 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Białynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98, 480–497 (1973)

    Google Scholar 

  9. Brylinski, J.-L.: Loop spaces, characteristic classes and geometric quantization. Progr. Math. 107. Boston: Birkhäuser 1993

  10. Cox, D.A., Katz, S.: Mirror symmetry and algebraic geometry. Am. Math. Soc. 1999

  11. Craw, A.: An introduction to motivic integration. Preprint math.AG/9911179

  12. Deligne, P.: Théorie de Hodge II. Publ. Math., Inst. Hautes Étud. Sci. 40, 5–57 (1971)

    Google Scholar 

  13. Deligne, P.: Théorie de Hodge III. Publ. Math., Inst. Hautes Étud. Sci. 44, 5–77 (1974)

    Google Scholar 

  14. Donagi, R., Gaitsgory, D.: The gerbe of Higgs bundles. Transform. Groups 7, 109–153 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Ginzburg, V.: The global nilpotent variety is Lagrangian. Duke Math. J. 109, 511–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giraud, J.: Cohomologie non abélienne. Grundlehren Math. Wiss. 179. Springer 1971

  17. Gothen, P.B.: The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface. Int. J. Math. 5, 861–875 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley 1978

  19. Harder, G., Narasimhan, M.S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212, 215–248 (1974/75)

    Google Scholar 

  20. Hausel, T.: Compactification of moduli of Higgs bundles. J. Reine Angew. Math. 503, 169–192 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Hausel, T., Thaddeus, M.: Generators for the cohomology of the moduli space of rank 2 Higgs bundles. Preprint math.AG/0003093

  22. Hausel, T., Thaddeus, M.: Examples of mirror partners arising from integrable systems. C. R. Acad. Sci., Paris Sér. I Math. 333, 313–318 (2001)

    Google Scholar 

  23. Hitchin, N.J.: Stable bundles and integrable systems. Duke Math. J. 54, 91–114 (1987)

    MATH  Google Scholar 

  24. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55, 59–126 (1987)

    Google Scholar 

  25. Hitchin, N.J.: The moduli space of special Lagrangian submanifolds. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV Ser. 25, 503–515 (1997–8)

    Google Scholar 

  26. Hitchin, N.J.: Lectures on special Lagrangian submanifolds. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999). pp. 151–182. Am. Math. Soc. 2001

  27. Karpilovsky, G.: The Schur multiplier. Oxford Univ. Press 1987

  28. Mumford, D.: Abelian varieties. Oxford Univ. Press 1970

  29. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, third enlarged edition. Ergeb. Math. Grenzgeb. 34. Springer 1994

  30. Narasimhan, M.S., Ramanan, S.: Generalised Prym varieties as fixed points. J. Indian Math. Soc., New Ser. 39, 1–19 (1975)

    Google Scholar 

  31. Newstead, P.E.: Characteristic classes of stable bundles over an algebraic curve. Trans. Am. Math. Soc. 169, 337–345 (1972)

    MATH  Google Scholar 

  32. Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. (3) 62, 275–300 (1991)

    Google Scholar 

  33. Ruan, Y.: Discrete torsion and twisted orbifold cohomology. Preprint math.AG/0005299

  34. Serre, J.-P.: Algebraic groups and class fields. Grad. Texts Math. 117. Springer 1988

  35. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety, I. Publ. Math., Inst. Hautes Étud. Sci. 79, 47–129 (1994)

    Google Scholar 

  36. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety, II. Publ. Math., Inst. Hautes Étud. Sci. 80, 5–79 (1995)

    Google Scholar 

  37. Simpson, C.T.: The Hodge filtration on nonabelian cohomology. In: J. Kollár, R. Lazarsfeld, D. Morrison (eds), Algebraic geometry – Santa Cruz 1995. Proc. Symp. Pure Math. 62. AMS 1997

  38. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243–259 (1996)

    Google Scholar 

  39. Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117, 317–353 (1994)

    MathSciNet  MATH  Google Scholar 

  40. Thaddeus, M.: Geometric invariant theory and flips. J. Am. Math. Soc. 9, 691–723 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Timmerscheidt, K.: Mixed Hodge theory for unitary local systems. J. Reine Angew. Math. 379, 152–171 (1987)

    MathSciNet  MATH  Google Scholar 

  42. Vafa, C.: String vacua and orbifoldized LG models. Mod. Phys. Lett. A 4, 1169–1185 (1989)

    MathSciNet  Google Scholar 

  43. Vafa, C., Witten, E.: On orbifolds with discrete torsion. J. Geom. Phys. 15, 189–214 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zaslow, E.: Topological orbifold models and quantum cohomology rings. Commun. Math. Phys. 156, 301–331 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hausel, T., Thaddeus, M. Mirror symmetry, Langlands duality, and the Hitchin system. Invent. math. 153, 197–229 (2003). https://doi.org/10.1007/s00222-003-0286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0286-7

Keywords

Navigation