Skip to main content

Growth Factor Influences on the Production and Migration of Cortical Neurons

  • Chapter
Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

Production of neurons from progenitor cells is the first step in building the complex, six-layered cerebral cortex. The neurons that will populate the mature cortex are produced during development in an active proliferative neuroepithelium, the ventricular zone (VZ), adjacent to the cerebral ventricle (Rakic 1975; McConnell 1995; Caviness et al. 1996; Ross 1996). The first postmitotic neurons move out of the ventricular zone to form the preplate, just beneath the pia. Subsequent neuronal cohorts, generated in the neo-cortical ventricular zone, move into the preplate to form the cortical plate, which will eventually become layers 2 through 6 of cortex. At the earliest stages of cortical plate formation, preplate neurons are divided into two layers, the marginal zone, above the cortical plate, and the subplate, below it (Marin-Padilla 1971; Luskin and Shatz 1985; Allendoerfer and Shatz 1994). Many neurons move into the cortical plate under the guidance of the processes of radial glia (Hatten 1990; Rakic et al. 1994), but others, arising in distant proliferative zones, migrate tangentially into cortex, guided by cues that have not been defined (reviewed in Pearlman et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendoerfer KL, Cabelli RJ, Escandon E, Kaplan DR, Nikolics K, Shatz CJ (1994) Regulation of neurotrophin receptors during the maturation of the mammalian visual system. J Neurosci 14: 1795–1811

    PubMed  CAS  Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient cortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17: 185–218

    Article  PubMed  CAS  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278: 474–476

    Article  PubMed  CAS  Google Scholar 

  • Anton ES, Marchionni MA, Lee KF, Rakic P (1997) Role of GGF/Neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124: 3501–3510

    PubMed  CAS  Google Scholar 

  • Antonopoulos J, Pappas IS, Parnavelas JG (1997) Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur J Neurosci 9: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Averbuch-Heller L, Pruginin M, Kahane N, Tsoulfas P, Parada L, Rosenthal A, Kalcheim C (1994) Neurotrophin 3 stimulates the differentiation of motorneurons from avian neural tube progenitor cells. Proc Natl Acad Sci 91: 3247–3251

    Article  PubMed  CAS  Google Scholar 

  • Baird A (1994) Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol 4: 78–86

    Article  PubMed  CAS  Google Scholar 

  • Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25: 1386–1403

    Article  PubMed  CAS  Google Scholar 

  • Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1: 549–553

    Google Scholar 

  • Barres BA, Raff MC, Gaese F, Bartke I, Dechant G, Barde YA (1994) A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367: 371–375

    Article  PubMed  CAS  Google Scholar 

  • Bartlett PF, Brooker GJ, Faux CH, Dutton R, Murphy M, Turnley A, Kilpatrick TJ (1998) Regulation of neural stem cell differentiation in the forebrain. Immunol Cell Biol 76: 414–418

    Article  PubMed  CAS  Google Scholar 

  • Bayer S, Altman J, Russo R, Dai X, Simmons J (1991) Cell migration in the rat embryonic neocortex. J Comp Neurol 307: 499–516

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical Development. Raven Press, New York

    Google Scholar 

  • Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F (1995) Igfl gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14: 717–730

    Google Scholar 

  • Behar T, Ma W, Hudson L, Barker JL (1994) Analysis of the anatomical distribution of GAD67 mRNA encoding truncated glutamic acid decarboxylase proteins in the embryonic rat brain. Brain Res Dev Brain Res 77: 77–87

    Article  PubMed  CAS  Google Scholar 

  • Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C, Barker JL (1996) GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci 16: 1808–1818

    PubMed  CAS  Google Scholar 

  • Behar TN, Schaffner AE, Tran HT, Barker JL (1995) GABA-induced motility of spinal neuro-blasts develops along a ventrodorsal gradient and can be mimicked by agonists of GABA(a) and GABA(b) receptors. J Neurosci Res 42: 97–108

    Article  PubMed  CAS  Google Scholar 

  • Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel D, Rosenthal A (1991) Neurotrophin 5: a novel neurotrophic factor that activates trkA and trkB. Neuron 7: 857–866 Bittman

    Google Scholar 

  • K, Owens DF, Kriegstein AR, LoTurco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17: 7037–7044

    Google Scholar 

  • Bohner AP, Akers RM, McConnell SK (1997) Induction of deep layer cortical neurons in vitro. Development 124: 915–923

    PubMed  CAS  Google Scholar 

  • Bondy CA, Werner H, Roberts CT Jr, LeRoith D (1990) Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol Endocrinol 4: 1386–1398

    Article  PubMed  CAS  Google Scholar 

  • Brickman YG, Ford MD, Small DH, Bartlett PF, Nurcombe V (1995) Heparan sulfates mediate the binding of basic fibroblast growth factor to a specific receptor on neural precursor cells. J Biol Chem 270: 24941–24948

    Article  PubMed  CAS  Google Scholar 

  • Brunstrom JE, Gray-Swain MR, Osborne PA, Pearlman AL (1997a) Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18: 505–517

    Article  PubMed  CAS  Google Scholar 

  • Brunstrom JE, Gray-Swain MR, Pearlman AL (1997b) GABA and Reelin are expressed by NT4induced excess neurons in the marginal zone of developing neocortex. Soc Neurosci Abstr 23: 80

    Google Scholar 

  • Cabelli RJ, Allendoerfer KL, Radeke MJ, Welcher AA, Feinstein SC, Shatz CJ (1996) Changing patterns of expression and subcellular localization of TrkB in the developing visual system. J Neurosci 16: 7965–7980

    PubMed  CAS  Google Scholar 

  • Cattaneo E, McKay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347: 762–765

    Article  PubMed  CAS  Google Scholar 

  • Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H] thymidine autoradiography. Dev Brain Res 4: 293–302

    Article  Google Scholar 

  • Caviness VS, Takahashi T, Miyama S, Nowakowski RS, Delalle I (1996) Regulation of normal proliferation in the developing cerebrum: potential actions of trophic factors. Expt Neurol 137: 357–366

    Article  CAS  Google Scholar 

  • Chao MV (1994) The p75 neurotrophin receptor. J Neurobiol 25: 1373–1385

    Article  PubMed  CAS  Google Scholar 

  • Chao MV, Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18: 321–326

    Google Scholar 

  • Coulier F, Pontarotti P, Roubin R, Hartung H, Goldfarb M, Birnbaum D (1997) Of worms and men: an evolutionary perspective on the fibroblast growth factor ( FGF) and FGF receptor families. J Mol Evol 44: 43–56

    Google Scholar 

  • Culican SM, Baumrind NL, Yamamoto M, Pearlman AL (1990) Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J Neurosci 10: 684–692

    PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen S-C, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719–723

    Article  PubMed  Google Scholar 

  • D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G (1996) The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 13: 227–255

    Article  Google Scholar 

  • De Carlos JA, Lopez-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16: 6146–6156

    PubMed  Google Scholar 

  • DeDiego I, Smith-Fernandez A, Fairen A (1994) Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J Neurosci 6: 983–997

    Article  PubMed  CAS  Google Scholar 

  • DeHamer MK, Guevara JL, Hannon K, Olwin BB, Calof AL (1994) Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factors. Neuron 13: 1083–1097

    Article  PubMed  CAS  Google Scholar 

  • DiCicco-Bloom E, Black IB (1988) Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proc Nat Acad Sci USA 85: 4066–4070

    Article  PubMed  CAS  Google Scholar 

  • DiCicco-Bloom E, Friedman WJ, Black IB (1993) NT3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron 11: 1101–1111

    Article  PubMed  CAS  Google Scholar 

  • DiCicco-Bloom E, Lu N, Pintar JE, Zhang J (1998) The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann N Y Acad Sci 865: 274–289

    Article  PubMed  CAS  Google Scholar 

  • Dono R, Texido G, Dussel R, Ehmke H, Zeller R (1998) Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J 17: 4213–4225

    Article  PubMed  CAS  Google Scholar 

  • Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF (1991) Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc Nat Acad Sci USA 88: 2199–2203

    Article  PubMed  CAS  Google Scholar 

  • Eckenstein FP (1994) Fibroblast growth factors in the nervous system. J Neurobiol 25: 14671480

    Google Scholar 

  • Eide FF, Vining ER, Eide BL, Zang KL, Wang XY, Reichardt LF (1996) Naturally occurring truncated trkb receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16: 3123–3129

    PubMed  CAS  Google Scholar 

  • Elshamy WM, Ernfors P (1996a) A local action of neurotrophin-3 prevents the death of proliferating sensory neuron precursor cells. Neuron 16: 963–972

    Article  PubMed  CAS  Google Scholar 

  • Elshamy WM, Ernfors P (1996b) Requirement of neurotrophin-3 for the survival of proliferating trigeminal ganglion progenitor cells. Development 122: 2405–2414

    PubMed  CAS  Google Scholar 

  • Escandon E, Soppet D, Rosenthal A, Mendoza-Ramirez J, Szonyl E, Burton LE, Henderson CE, Parada LF, Nikolics K (1994) Regulation of neurotrophin receptor expression during embryonic and postnatal development. J Neurosci 14: 2054–2068

    PubMed  CAS  Google Scholar 

  • Ferhat L, Represa A, Zouaouiaggoun D, Ferhat W, Benari Y, Khrestchatisky M (1997) Fgf-2 induces nerve growth factor expression in cultured rat hippocampal neurons. Eur J Neurosci 9: 1282–1289

    Article  PubMed  CAS  Google Scholar 

  • Florkiewicz RZ, Majack RA, Buechler RD, Florkiewicz E (1995) Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J Cell Physiol 162: 388–399

    Article  PubMed  CAS  Google Scholar 

  • Forsberg-Nilsson K, Behar TN, Afrakhte M, Barker JL, McKay RD (1998) Platelet-derived

    Google Scholar 

  • growth factor induces chemotaxis of neuroepithelial stem cells. J Neurosci Res 53:521–530 Frantz GD, McConnell SK (1996) Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17: 55–61

    Google Scholar 

  • Frodin M, Gammeltoft S (1994) Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation. Proc Natl Acad Sci USA 91: 1771–1775

    Article  PubMed  CAS  Google Scholar 

  • Fryer RH, Kaplan DR, Feinstein SC, Radeke MJ, Grayson DR, Kromer LF (1996) Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. J Comp Neurol 374: 21–40

    Article  PubMed  CAS  Google Scholar 

  • Gadisseux J-F, Goffinet AM, Lyon G, Evrard P (1992) The human transient subpial granular layer: an optical, immunohistochemical, and ultrastructural analysis. J Comp Neurol 324: 94–114

    Article  PubMed  CAS  Google Scholar 

  • Gaese F, Kolbeck R, Barde YA (1994) Sensory ganglia require neurotrophin-3 early in development. Development 120: 1613–1619

    PubMed  CAS  Google Scholar 

  • Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G (1995) Apoptosis in cerebellar granule cells is blocked by high KC1, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neuroscience 15: 1172–1179

    CAS  Google Scholar 

  • Garner AS, Menegay HJ, Boeshore KL, Xie XY, Voci JM, Johnson JE, Large TH (1996) Expression of trkb receptor isoforms in the developing avian visual system. J Neurosci 16: 1740–1752

    PubMed  CAS  Google Scholar 

  • Gasser UE, Hatten ME (1990) Central nervous system neurons migrate on astroglial fibers from heterotypic brain regions in vitro. Proc Natl Acad Sci USA 87: 4543–4547

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Greenberg ME (1995) Distinct roles of bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15: 89–103

    Article  PubMed  CAS  Google Scholar 

  • Giordano S, Sherman L, Lyman W, Morrison R (1992) Multiple molecular weight forms of basic fibroblast growth factor are developmentally regulated in the central nervous system. Dev Biol 152: 293–303

    Article  PubMed  CAS  Google Scholar 

  • Gotz R, Koster R, Winkler C, Raulf F, Lottspeich F, Schartl M, Thoenen H (1994) Neurotrophin6 is a new member of the nerve growth factor family. Nature 372: 266–269

    Article  PubMed  CAS  Google Scholar 

  • Greene JM, Li YL, Yourey PA, Gruber J, Carter KC, Shell BK, Dillon PA, Florence C, Duan DR, Blunt A, Ornitz DM, Ruben SM, Alderson RF (1998) Identification and characterization of a novel member of the fibroblast growth factor family. Eur J Neurosci 10: 1911–1925

    Article  PubMed  CAS  Google Scholar 

  • Hallbrook F, Ibâíiez CF, Persson H (1991) Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6: 845–858

    Article  Google Scholar 

  • Hanson MG Jr, Shen S, Wiemelt AP, McMorris FA, Barres BA (1998) Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J Neurosci 18: 7361–7371

    PubMed  CAS  Google Scholar 

  • Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 100: 384–396

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (1987) Neuronal inhibition of astroglial cell proliferation is membrane mediated. J Cell Biol 104: 1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (1990) Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. TINS 13: 179–184

    PubMed  CAS  Google Scholar 

  • Hatten ME, Heintz N (1998) Neurogenesis and migration. In: Zigmond M (eds) Fundamentals of Neuroscience. Academic Press, New York, pp 451–479

    Google Scholar 

  • Hunter KE, Hatten ME (1995) Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain. Proc Nati Acad Sci USA 92: 20612065

    Google Scholar 

  • J. E. Brunstrom and A. L. Pearlman Ip NY, Ibanez CF, Nye SH, McClain J, Jones PF, Gies DR, Belluscio L, Le Beau MM, Espinosa R, Squinto SP, Persson H, Yancopoulos GD (1992) Mammalian neurotrophin 4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci 89: 3060–3064

    Google Scholar 

  • Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60: 1–41

    Article  PubMed  CAS  Google Scholar 

  • Joseph SJ, Ford MD, Barth C, Portbury S, Bartlett PF, Nurcombe V, Greferath U (1996) A proteoglycan that activates fibroblast growth factors during early neuronal development is a perlecan variant. Development 122: 3443–3452

    PubMed  CAS  Google Scholar 

  • Kalchiem C, Carmeli C, Rosenthal A (1992) Neurotrophin 3 is a mitogen for cultured neural crest cells. Proc Natl Acad Sci 89: 1661–1665

    Article  Google Scholar 

  • Kilpatrick TJ, Bartlett PF (1993) Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Conway D, Parada L, Barbacid M (1990a) The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61: 647–656

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Martin-Zanca D, Barbacid M, Parada L (1990b) Expression of the tyrosine kinase receptor gene trkB is confined to the murine embryonic and adult nervous system. Development 109: 845–850

    PubMed  CAS  Google Scholar 

  • Klein R, Nanduri V, Jing S, Lamballe F, Tapley P, Bryant S, Cordon-Cardo C, Jones K, Reichardt L, Barbacid M (1991) The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin 3. Cell 66: 395–403

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Parada LF, Coulier F, Barbacid M (1989) TrkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J 8: 3701–3709

    PubMed  CAS  Google Scholar 

  • Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL, Barbacid M (1993) Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75: 113–122

    PubMed  CAS  Google Scholar 

  • Knusel B, Rabin SJ, Hefti F, Kaplan DR (1994) Regulated neurotrophin receptor responsiveness during neuronal migration and early differentiation. J Neurosci 14: 1542–1554

    PubMed  CAS  Google Scholar 

  • Lamballe F, Smeyne R, Barbacid M (1994) Development of trkC, the neurotrophin-3 receptor, in the mammalian nervous system. J Neurosci 14: 14–28

    PubMed  CAS  Google Scholar 

  • Lauder JM (1993) Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci 16: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavalis JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19: 78817888

    Google Scholar 

  • Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A (1990) The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskel 17: 118–132

    Article  CAS  Google Scholar 

  • Lee SM, Danielian PS, Fritzsch B, McMahon AP (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124: 959–969

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1976) The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron. Prog Brain Res 45: 235–258

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neur 193: 815–840

    Article  PubMed  CAS  Google Scholar 

  • Lillien L (1998) Neural progenitors and stem cells: mechanisms of progenitor heterogeneity Curr Opin Neurobiol 8: 37–44

    CAS  Google Scholar 

  • Lindholm D, Carroll P, Tzimagiogis G, Thoenen H (1996) Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci 8: 1452–1460

    Article  PubMed  CAS  Google Scholar 

  • Lindholm D, Castren E, Tsoulfas P, Kolbeck R, da Penha Berzaghi M, Leingartner A, Heisenberg C-P, Tesarollo L, Parada LF, Thoenen H (1993) Neurotrophin-3 induced by tri-iodothyronine in cerebellar granule cells promotes purkinje cell differentiation. J Cell Biol 122: 443–450

    Article  PubMed  CAS  Google Scholar 

  • Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor ( Igflr ). Cell 75: 59–72

    Google Scholar 

  • Lo Turco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15: 1287–1298

    Article  Google Scholar 

  • Lund PK, Moats-Staats BM, Hynes MA, Simmons JG, Jansen M, D’Ercole AJ, Van Wyk JJ (1986) Somatomedin-C/insulin-like growth factor-I and insulin-like growth factor-II mRNAs in rat fetal and adult tissues. J Biol Chem 261: 14539–14544

    PubMed  CAS  Google Scholar 

  • Luskin MB, Shatz CJ (1985) Neurogenesis of the cat’s primary visual cortex. J Comp Neurol 242: 611–631

    Article  PubMed  CAS  Google Scholar 

  • Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, Lindsay RM, Yancopoulos GD (1990a) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5: 501–509

    Article  PubMed  CAS  Google Scholar 

  • Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD (1990b) Neurotrophin-3: a neurotrophic factor related to NGF and BNDF. Science 247: 1446–1451

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134: 117–145

    Article  PubMed  CAS  Google Scholar 

  • Mason IJ (1994) The ins and outs of fibroblast growth factors. Cell 78: 547–552

    Article  PubMed  CAS  Google Scholar 

  • Mason IJ, Fuller-Pace F, Smith R, Dickson C (1994) FGF-7 (keratinocyte growth factor) ex-pression during mouse development suggests roles in myogenesis, forebrain regionalization and epithelial-mesenchymal interactions. Mech Dev 45: 15–30

    Article  PubMed  CAS  Google Scholar 

  • McConnell SK (1995) Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15: 761–768

    Article  PubMed  CAS  Google Scholar 

  • McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254: 282–285

    Article  PubMed  CAS  Google Scholar 

  • McWhirter JR, Goulding M, Weiner JA, Chun J, Murre C (1997) A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbxl. Development 124: 3221–3232

    PubMed  CAS  Google Scholar 

  • Meakin SO, Shooter EM (1992) The nerve growth factor family of receptors. Trends Neurosci 15: 323–331

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Goffinet AM (1998) Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397: 29–40

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Gonzalez-Hernandez T (1993) Developmental changes in layer 1 of the human neo-cortex during prenatal life: a DiI-tracing and AchE and NADPH-d histochemistry study. J Comp Neurol 338: 317–336

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Soria JM, Martinez-Galan JR, Martin-Clemente B, Fairen A (1998) Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397: 493–518

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15: 805–819

    Article  PubMed  CAS  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4: 277–296

    Article  PubMed  CAS  Google Scholar 

  • Michaelson MD, Mehler MF, Xu H, Gross RE, Kessler JA (1996) Interleukin-7 is trophic for embryonic neurons and is expressed in developing brain. Developmental Biology 179: 251–263

    Article  PubMed  CAS  Google Scholar 

  • Middlemas DS, Lindberg RA, Hunter T (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Mol Cell Biol 11: 143–153

    Google Scholar 

  • Minichiello L, Casagranda F, Tatche RS, Stucky CL, Postigo A, Lewin GR, Davies AM, Klein R (1998) Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron 21: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Misson J-P, Edwards MA, Yamamoto M, Caviness VS Jr (1988) Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Dev Brain Res 44: 95–108

    Article  CAS  Google Scholar 

  • Miyata T, Nakajima K, Aruga J, Takahashi S, Ikenaka K, Mikoshiba K, Ogawa M (1996) Distribution of a reeler gene-related antigen in the developing cerebellum: an immunohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J Comp Neurol 372: 215–228

    Article  PubMed  CAS  Google Scholar 

  • Murphy M, Drago J, Bartlett PF (1990) Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J Neurosci Res 25: 463–475

    Article  PubMed  CAS  Google Scholar 

  • Nadarajah B, Jones AM, Evans WH, Parnavelas JG (1997) Differential expression of connexins during neocortical development and neuronal circuit formation. J Neurosci 17: 3096–3111

    PubMed  CAS  Google Scholar 

  • Nadarajah B, Makarenkova H, Becker DL, Evans WH, Parnavelas JG (1998) Basic FGF increases communication between cells of the developing neocortex. J Neurosci 18: 7881–7890

    PubMed  CAS  Google Scholar 

  • Naruo K, Seko C, Kuroshima K, Matsutani E, Sasada R, Kondo T, Kurokawa T (1993) Novel secretory heparin-binding factors from human glioma cells (glia-activating factors) involved in glial cell growth. Purification and biological properties. J Biol Chem 268: 2857–2864

    Google Scholar 

  • Nielsen FC, Wang E, Gammeltoft S (1991) Receptor binding, endocytosis, and mitogenesis of insulin-like growth factors 1 and 2 in fetal rat brain neurons. J Neurochem 56: 12–21

    Article  PubMed  CAS  Google Scholar 

  • Nurcombe V, Ford MD, Wildschut JA, Bartlett PF (1993) Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteolgycan. Science 260: 103–106

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14: 899–912

    Article  PubMed  CAS  Google Scholar 

  • Ohbayashi N, Hoshikawa M, Kimura S, Yamasaki M, Fukui S, Itoh N (1998) Structure and expression of the mRNA encoding a novel fibroblast growth gactor, FGF-18. J Biol Chem 273: 18161–18164

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271: 15292–15297

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P (1992) Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 12: 240–247

    PubMed  CAS  Google Scholar 

  • O’Rourke NA, Chenn A, McConnell SK (1997) Postmitotic neurons migrate tangentially in the cortical ventricular zone. Development 124: 997–1005

    PubMed  Google Scholar 

  • O’Rourke NA, Sullivan DP, Kaznowski CE, Jacobs AA, McConnell SK (1995) Tangential migration of neurons in the developing cerebral cortex. Development 121: 2165–2176

    PubMed  Google Scholar 

  • Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, Givol D, Lonai P (1993) Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 158: 475–486

    Article  PubMed  CAS  Google Scholar 

  • Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C (1998) Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. PNAS (USA) 95: 5672–5677

    Article  CAS  Google Scholar 

  • Ozawa K, Urono T, Miyakawa K, Seo M, Imamura T (1996) Expression of the fibroblast growth factor family and their receptor family genes during mouse brain development. Mol Brain Res 41: 279–288

    Article  PubMed  CAS  Google Scholar 

  • Pabbathi VK, Brennan H, Muxworthy A, Gill L, Holmes FE, Vignes M, Haynes LW (1997) Catecholaminergic regulation of proliferation and survival in rat forebrain paraventricular germinal cells. Brain Res 760: 22–33

    Article  PubMed  CAS  Google Scholar 

  • Pearlman AL, Faust PL, Hatten ME, Brunstrom JE (1998) New directions for neuronal migration. Curr Opin Neurobiol 8: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Pearlman AL, Sheppard AM (1996) Extracellular matrix in early cortical development. Prog Brain Res 108: 117–134

    PubMed  CAS  Google Scholar 

  • Pearlman AL, Snider WD, Osborne PA, Brunstrom JE (1995) Neurotrophin-4 induces the production of c-fos in specific populations of developing cortical neurons that express trkB. Soc Neurosci Abst 21: 546

    Google Scholar 

  • Peters K, Ornitz D, Werner S, Williams L (1993) Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Devel Biol 155: 423–430

    Article  CAS  Google Scholar 

  • Peters K, Werner S, Chen G, Williams L (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114: 233–243

    PubMed  CAS  Google Scholar 

  • Powell PP, Finklestein SP, Dionne CA, Jaye M, Klagsbrun M (1991) Temporal, differential and regional expression of mRNA for basic fibroblast growth factor in the developing and adult rat brain. Brain Res Mol Brain Res 11: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Davis AA, Goderie SK, Temple S (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18: 81–93

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Goderie SK, Shen Q, Stern JH, Temple S (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125: 3143–3152

    PubMed  CAS  Google Scholar 

  • Rajah R, Bhala A, Nunn SE, Peehl DM, Cohen P (1996) 7S nerve growth factor is an insulin-like growth factor-binding protein protease. Endocrinology 137: 2676–2682

    Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61–84

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1975) Timing of major ontogenetic events in the visual cortex of the rhesus monkey. In: Buchwald NA, Brazier M (eds) Brain Mechanisms in Mental Retardation. Academic Press, New York, pp 3–40

    Google Scholar 

  • Rakic P, Cameron RS, Komuro H (1994) Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr Opin Neurobiol 4: 63–69

    Article  PubMed  CAS  Google Scholar 

  • Ramon Y, Cajal S (1890) Sobre la existencia de celulas nerviosas especiales en la primera capa de las circunvoluciones cerebrales. Grac Med Catalana 3: 737–739

    Google Scholar 

  • Reid CB, Tavazoie SF, Walsh CA (1997) Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development 124: 2441–2450

    PubMed  CAS  Google Scholar 

  • Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E, Ernfors P, Ibanez CF (1998) BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21: 305–315

    Article  PubMed  CAS  Google Scholar 

  • Rio C, Rieff HI, Qi PM, Corfas G (1997) Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19: 39–50

    Article  PubMed  CAS  Google Scholar 

  • Rosen GD, Sherman GF, Richman JM, Stone LV, Galaburda AM (1992) Induction of molecular

    Google Scholar 

  • J. E. Brunstrom and A. L. Pearlman layer ectopias by puncture wounds in newborn rats and mice. Dev Brain Res 67: 285–291

    Google Scholar 

  • Ross ME (1996) Cell division and the nervous system: regulating the cycle from neural dif-ferentiation to death. Trends Neurosci 19: 62–68

    Article  PubMed  CAS  Google Scholar 

  • Rotwein P, Burgess SK, Milbrandt JD, Krause JE (1988) Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci USA 85: 265–269

    Article  PubMed  CAS  Google Scholar 

  • Ryden M, Murray-Rust J, Glass D, Ilag L, Trupp M, Yancopoulos GD, McDonald NQ, Ibanez CF (1995) Functional analysis of mutant neurotrophins deficient in low-affinity binding reveals a role for p75 Lncfr in NT-4 signalling. EMBO J 14: 1979–1990

    PubMed  CAS  Google Scholar 

  • Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9: 1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Schluesener HJ, Meyermann R (1994) Expression of BMP-6, a TGF-beta related morphogenetic cytokine, in rat radial glial cells. Glia 12: 161–164

    Article  PubMed  CAS  Google Scholar 

  • Segal RA, Greenberg ME (1996) Intracellular signaling pathways activated by neurotrophic receptors. Ann Rev Neurosci 19: 463–489

    Article  PubMed  CAS  Google Scholar 

  • Smallwood PM, Munoz-Sanjuan I, Tong P, Macke JP, Hendry SH, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1996) Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc Nail Acad Sci USA 93: 9850–9857

    Article  CAS  Google Scholar 

  • Snider WD (1994) Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell 77: 627–638

    Article  PubMed  Google Scholar 

  • Stipp CS, Litwack ED, Lander AD (1994) Cerebroglycan: an integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system and expressed specifically during neuronal differentiation. J Cell Biol 124: 149–160

    Article  PubMed  CAS  Google Scholar 

  • Strohmaier C, Carter BD, Urfer R, Barde YA, Dechant G (1996) A splice variant of the neurotrophin receptor trkb with increased specificity for brain-derived neurotrophic factor. EMBO J 15: 3332–3337

    PubMed  CAS  Google Scholar 

  • Stylianopoulou F, Efstratiadis A, Herbert J, Pintar J (1988) Pattern of the insulin-like growth factor II gene expression during rat embryogenesis. Development 103: 497–506

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1992) BUdR as an S-phase marker for quantitative studies of cytokinetic behavior in the murine cerebral ventricular zone. J Neurocytol 21: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17: 8313–8323

    PubMed  CAS  Google Scholar 

  • Tan SS, Kalloniatis M, Sturm K, Tam PP, Reese BE, Faulkner-Jones B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neo-cortex. Neuron 21: 295–304

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Sawada M, Yoshida S, Hanaoka F, Marunouchi T (1995) Insulin prevents apoptosis of external granular layer neurons in rat cerebellar slice cultures. Neurosci Lett 199: 37–40

    Article  PubMed  CAS  Google Scholar 

  • Timmusk T, Belluardo N, Metsis M, Persson H (1993) Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues. Eur J Neurosci 5: 605–613

    Article  PubMed  CAS  Google Scholar 

  • Tsoulfas P, Soppet D, Escandon E, Tessarollo L, Mendoza-Ramirez JL, Rosenthal A, Nikolics K, Parada LF (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in Pc12 cells. Neuron 10: 975–990

    Article  PubMed  CAS  Google Scholar 

  • Tsoulfas P, Stephens RM, Kaplan DR, Parada LF (1996) TrkC isoforms with inserts in the kinase domain show impaired signaling responses. J Biol Chem 271: 5691–5697

    Article  PubMed  CAS  Google Scholar 

  • Ulrich A, Schlessinger S (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212

    Article  Google Scholar 

  • Vaccarino FM, Schwartz ML, Hartigan D, Leckman JF (1995) Basic fibroblast growth factor increases the number of excitatory neurons containing glutamate in the cerebral cortex. Cereb Cortex 5: 64–78

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela DM, Maisonpierre PC, Glass DJ, Rojar E, Nunez L, Kong Y, Gies DR, Stitt TN, Ip NY, Yancopoulos GD (1993) Alternative forms of rat TrkC with different functional capabilities. Neuron 10: 963–974

    Article  PubMed  CAS  Google Scholar 

  • Valverde F, Santacana M (1994) Development and early postnatal maturation of the primary olfactory cortex. Dev Brain Res 80: 96–114

    Article  CAS  Google Scholar 

  • Verdi JM, Anderson DJ (1994) Neurotrophins regulate sequential changes in neurotrophin receptor expression by sympathetic neuroblasts. Neuron 13: 1359–1372

    Article  PubMed  CAS  Google Scholar 

  • Verdi JM, Groves AK, Farinas I, Jones K, Marchionni MA, Reichardt LF, Anderson DJ (1996) A reciprocal cell-cell interaction mediated by NT-3 and neuregulins controls the early survival and development of sympathetic neuroblasts. Neuron 16: 515–527

    Article  PubMed  CAS  Google Scholar 

  • Vicario-Abejon C, Johe KK, Hazel TG, Callazo D, McKay RDG (1995) Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289: 74–88

    Article  PubMed  CAS  Google Scholar 

  • Weise B, Janet T, Grothe C (1993) Localization of bFGF and FGF-receptor in the developing nervous system of the embryonic and newborn rat. J Neurosci Res 34: 442–453

    Article  PubMed  CAS  Google Scholar 

  • Werner H, Woloschak M, Adamo M, Shen-Orr Z, Roberts CT Jr, LeRoith D (1989) Developmental regulation of the rat insulin-like growth factor receptor gene. Proc Natl Acad Sci USA 86: 7451–7455

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GA, Farinas I, Backus C, Yoshida CK, Reichardt LF (1996) Neurotrophin-3 is a survival factor in vivo for early mouse trigeminal neurons. J Neurosci 16: 7661–7669

    PubMed  CAS  Google Scholar 

  • Williams BP, Park JK, Alberta JA, Muhlebach SG, Hwang GY, Roberts TM, Stiles CD (1997) A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron 18: 553–562

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Conlon RA, Rossant J (1992) Expression of the fibroblast growth factor receptor FGFR-1/flg during gastrulation and segmentation in the mouse embryo. Devel Biol 152: 75–88

    Article  CAS  Google Scholar 

  • Ye P, Xing YZ, Dai ZH, D’Ercole AJ (1996) In vivo actions of insulin-like growth factor-1 (Igf-1) on cerebellum development in transgenic mice: evidence that Igf-1 increases proliferation of granule cell progenitors. Brain Res Dev Brain Res 95: 44–54

    Article  PubMed  CAS  Google Scholar 

  • Zackenfels K, Oppenheim RW, Rohrer H (1995) Evidence for an important role of IGF-I and IGF-II for the early development of chick sympathetic neurons. Neuron 14: 731–741

    Article  PubMed  CAS  Google Scholar 

  • Zigova T, Betarbet R, Soteres BJ, Brock S, Bakay RAE, Luskin MB (1996) A comparison of the patterns of migration and the destinations of homotopically transplanted neonatal sub-ventricular zone cells and heterotopically transplanted telencephalic ventricular zone cells. Dev Biol 173: 459–474

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brunstrom, J.E., Pearlman, A.L. (2000). Growth Factor Influences on the Production and Migration of Cortical Neurons. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics