Skip to main content

Neurotrophic Factors: Versatile Signals for Cell-Cell Communication in the Nervous System

  • Chapter
Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

Cell—cell communication is the main business of the cellular components of the nervous system. This dialogue is primarily based on layered system of molecules released and received by the different cell types that form the nervous system and its targets. At one level, neurotransmitter and neuromodulator substances dictate and propagate the activation states of neurons. In another layer, we find a group of regulatory molecules, typically poly­peptides of roughly a couple of hundred residues long, that control diverse aspects of the life of neurons, including survival, neuritic growth and dif­ferentiation states. Not surprisingly, many of these molecules have diverse functions also in tissues and organs outside the nervous system, where they are known as growth factors or cytokines. Although the term “neurotrophic factor” was originally associated with a survival-promoting activity, work on these molecules during the past ten years has considerably extended the functional spectrum of the term to comprise almost any growth factor or cytokine having some kind of effect on neurons. Important recent additions to the growing list of activities attributed to neurotrophic factors include short term effects on synaptic plasticity, growth cone steering and, quite paradoxically in retrospective, as active promoters of cell death. As much as cell—cell communication is of crucial importance for development, neuro­trophic factors play a central role during the assembly of the nervous system as regulators of cell number, axonal growth, target invasion and synaptic connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson A, Conover JC, Fandl JP, Dechiara TM, Russell M, Thadani A, Squinto SP, Yancopulos GD, Lindsay RM (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374: 450–453

    Article  PubMed  CAS  Google Scholar 

  • Alcantara S, Frisen J, Delrio JA, Soriano E, Barbacid M, Silossantiago I (1997) TrKB signaling is required for postnatal survival of cns neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J of Neurosci 17: 3623–3633

    CAS  Google Scholar 

  • Altar CA, Distefano PS (1998) Neurotrophic trafficking by anterograde transport. Trends Neurosci 21: 433–437

    Article  PubMed  CAS  Google Scholar 

  • Arenas E, Trupp M, Akerud P, Ibeâíiez CF (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15: 1465–1473

    Article  PubMed  CAS  Google Scholar 

  • Blochl A, Thoenen H (1995) Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent

    Google Scholar 

  • regulated pathway. Eur J Neurosci 7:1220–1228

    Google Scholar 

  • Brunstrom JE, Grayswain MR, Osborne PA, Pearlman AL (1997) Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18: 505–517

    Article  PubMed  CAS  Google Scholar 

  • Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha-1 is an essential receptor component for gdnf in the developing nervous system and kidney. Neuron 21: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Dev Brain Res 4: 293–302

    Article  Google Scholar 

  • Caviness VS Jr, Crandall JE, Edwards MA (1988) The reeler malformation: implications for neocortical histogenesis. In: Peters A, Jones EG (eds) Development and maturation of cerebral cortex. Plenum, New York, pp 59–89

    Google Scholar 

  • Crowley C, Spencer SD, Nishimura MC, Chen KS, Pittsmeek S, Armanini MP, Ling LH, Mcmahon SB, Shelton DL, Levinson AD, Phillips HS (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76: 1001–1011

    Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler Nature 374: 719–723

    Google Scholar 

  • Dechant G, Barde Y-A (1997) Signaling through the neurotrophin receptor p75NTR Curr Op Neurobiol 7:413–418

    Google Scholar 

  • Del Rio JA, Martinez A, Fonseca M, Auladell C, Soriano E (1995) Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody. Cereb Cortex 5: 13–21

    Article  CAS  Google Scholar 

  • Derer P, Derer M (1990) Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy. Neuroscience 36: 839–856

    Google Scholar 

  • Ebens A, Brose K, Leonardo ED, Hanson MG, Bladt F, Birchemeier C, Barres BA, Tessierlavigne M (1996) Hepatocyte growth factor scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons Neuron 17: 1157–1172

    CAS  Google Scholar 

  • Edwards RH, Rutter WJ, Hanahan D (1989) Direct expression of NGF to pancreatic beta-cells in transgenic mice leads to selective hyperinervation of the islets Cell 58: 161–170

    CAS  Google Scholar 

  • Enomota H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM, Milbrandt J (1998) GFR-alpha-l-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21: 317–324

    Article  Google Scholar 

  • Ernfors P, Lee K-F, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiences in the peripheral nervous system and loss of limb proprioceptive afferents Cell. 77: 503–512

    CAS  Google Scholar 

  • Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368: 147–150

    Article  PubMed  CAS  Google Scholar 

  • Eronfors P, Vandewater T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14: 1153–1164

    Article  Google Scholar 

  • Fagan AM, Garber M, Barbacid M, Silossantiago I, Holtzman DM (1997) A role for TrkA during maturation of striatal and basal forebrain cholinergic neurons in vivo. J Neurosci 17: 76447654

    Google Scholar 

  • Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369: 658–661

    Article  PubMed  CAS  Google Scholar 

  • Farinas I, Yoshida CK, Backus C, Reichardt LF (1996) Lack of neurotrophin 3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17: 1065–1078

    Article  PubMed  CAS  Google Scholar 

  • Frade JM, Rodriguez-Tébar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383: 166–168

    Article  PubMed  CAS  Google Scholar 

  • Friedman W, Olson L, Persson H (1991) Cells that express brain-derived neurotrophic factor mRNA in the developing postnatal rat brain. Eur J Neurosci 3: 688–697

    Google Scholar 

  • Goffinet AM (1984) Events governing organization of postmigratory neurons. Studies on brain development in moral and reeler mice. Brain Res 319: 261–296

    PubMed  CAS  Google Scholar 

  • Goodman LJ, Valverde J, Lim F, Geschwind MD, Federoff HJ, Geller AI, Hefti F (1996) Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol Cellular Neurosci 7: 222–238

    Google Scholar 

  • Hamburger V (1975) Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 160: 535–546

    Article  PubMed  CAS  Google Scholar 

  • Heuckeroth RO, Enomoto H, Grider JR, Golden JP, Hanke JA, Jackman A, Molliver DC, Bardgett ME, Snider WD, Johnson EM, Milbrandt J (1999) Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22: 253–263

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune S, Takahara T, Sasaki N, Hirose K, Yoshiki A, Ohashi T, Kusakabe M, Murakami Y, Muramatsu M, Watanabe S et al. (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genetics 10: 77–83

    Google Scholar 

  • Hollyday M, Hamburger V (1976) Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J Comp Neurol 170: 311–320

    Article  PubMed  CAS  Google Scholar 

  • Hoyle GW, Mercer EH, Palmiter RD, Brinster RL (1993) Expression of NGF in sympathetic neurons leads to excessive axon outgrowth from ganglia but decreased terminal innervation within tissues. Neuron 10: 1019–1034

    Article  PubMed  CAS  Google Scholar 

  • Ibanez CF (1998) Emerging themes in structural biology of neurotrophic factors. Trends Neurosci 21: 438–444

    Google Scholar 

  • Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76: 989–999

    Article  PubMed  CAS  Google Scholar 

  • Kang HJ, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267: 1658–1662

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Silossantiago I, Smeyne RJ, Lira SA, Brambilla R, Bryant S, Zhang L, Snider WD, Barbacid M (1994) Disruption of the neurotrophin-3 receptor gene Trkc eliminates Ia muscle afferents and results in abnormal movements. Nature 368: 249–251

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL, Barbacid M (1993) Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75: 113–122

    Google Scholar 

  • Korsching S (1993) The neurotrophic factor concept: a reexamination. J Neurosci 13: 2739–2748

    Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later Science 237: 1154–1162

    CAS  Google Scholar 

  • Martinez A, Alcantara S, Borrell V, Del RJ, Blasi J, Otal R, Campos N, Boronat A, Barbacid M, Silos SI, Soriano E (1998) TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J Neurosci 18: 7336–7350

    PubMed  CAS  Google Scholar 

  • Miller FD, Kalpan DR (1998) Life and death decisions–a biological role for the p75 neurotrophin receptor. Cell Death Diff 5: 343–345

    Article  CAS  Google Scholar 

  • Minichillo L, Casagranda F, Tatche RS, Stucky CL, Postigo A, Lewin GR, Davies AM, Klein R (1998) Point mutation in trkb causes loss of nt4-dependent neurons without major effects on diverse bdnf responses. Neuron 21: 335–345

    Article  Google Scholar 

  • Minichiello L, Klein R (1996) TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Gene Dev 10: 2849–2858

    Google Scholar 

  • Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carvermoore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking gdnf. Nature 382: 76–79

    Google Scholar 

  • Nosrat CA, Blomlf J, Elshamy WM, Ernfors P, Olson L (1997) Lingual deficits in BDNF and NT3 mutant mice leading to gustatory and somatosensory disturbances, respectively. Development 124: 1333–1342

    PubMed  CAS  Google Scholar 

  • Oakley RA, Lefcort FB, Clary DO, Reichardt LF, Prevedtte D, Oppenheim RW, Frank E (1997) Neurotrophin-3 promotes the differentiation of muscle spindle afferents in the absence of peripheral targets. J Neurosci 17: 4262–4274

    PubMed  CAS  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14: 899–912

    Article  PubMed  CAS  Google Scholar 

  • Peterson DA, Leppert JT, Lee KF, Gage FH (1997) Basal forebrain neuronal loss in mice lacking neurotrophin receptor p75. Science 277: 837–838

    Article  PubMed  CAS  Google Scholar 

  • Pichel JG, Shen LY, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking gdnf. Nature 382: 73–76

    Google Scholar 

  • Rabizadeh S, Oh J, Zhong LT, Yang J, Bitler CM, Butcher LL, Bredesen DE (1993) Induction of apoptosis by the low-affinity NGF receptor. Science 261: 345–348

    Google Scholar 

  • Reichardt L, Farinas I (1997) Neurotrophic factors and their receptors: roles in neuronal development and function. In: Cowan W, Jessell T and Zipursky S (eds) Molecular and Cellular Approaches of Neural Development. New York: Oxford University Press

    Google Scholar 

  • Ringstedt T, Ibanez CF, Nosrat C (1999) Role of BDNF in target invasion in the gustatory system. J Neurosci 19: 3507–3518

    PubMed  CAS  Google Scholar 

  • Ringstedt T, Kucera J, Lendahl U, Ernfors P, Ibanez CF (1997) Limb proprioceptive deficits without neuronal loss in transgenic mice overexpressing neurotrophin-3 in the developing nervous system. Development 124: 2603–2613

    PubMed  CAS  Google Scholar 

  • Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E, Ernfors P, Ibanez CF (1998) BDNF regulates reelin expression and cajal-retzius cell development in the cerebral cortex. Neuron 21: 305–315

    Google Scholar 

  • Rossi J, Luukko K, Poteryaev D, Laurikainen A, Sun YF, Laakso T, Erikainen S, Tuominen R, Lakso M, Rauvala H, Arumae U, Pasternack M, Saarma M, Airaksinen MS (1999) Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha 2, a functional neurturin receptor. Neuron 22: 243–252

    Google Scholar 

  • Sanchez MP, Silossantiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382: 70–73

    Google Scholar 

  • Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9: 1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM (1999) Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol 9: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in bdnf-/- mice reveals a role for neurotrophins in cns patterning. Neuron 19: 269–281

    Article  PubMed  CAS  Google Scholar 

  • Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368: 246–249

    Article  PubMed  CAS  Google Scholar 

  • Song HJ, Ming GL, Poo MM (1997) cAMP-induced switching in turning direction of nerve growth cones. Nature 388: 275–279

    Google Scholar 

  • Thonen H (1995) Neurotrophins and neuronal plasticity Science 270: 593–598

    Google Scholar 

  • Timmusk T, Belluardo N, Persson H, Metsis M (1994) Developmental regulation of brain-derived neurotrophic factor messenger RNAs transcribed from different promoters in the rat brain. Neuroscience 60: 287–291

    Article  PubMed  CAS  Google Scholar 

  • Trupp M, Rydén M, Jörnvall H, Timmusk T, Funakoshi H, Arenas E, Ibanez CF (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130: 137–148

    Article  PubMed  CAS  Google Scholar 

  • Van der Zee C, Ross GM, Riopelle RJ, Hagg T (1996) Survival of cholinergic forebrain neurons in developing p75(ngfr)-deficient mice. Science 274: 1729–1732

    Article  PubMed  Google Scholar 

  • Wright DE, Zhou L, Kucera J, Snider WD (1997) Introduction of a neurotrophin-3 transgene into muscle selectively rescues proprioceptive neurons in mice lacking endogenous neurotrophin-3. Neuron 19: 503–517

    Google Scholar 

  • Yeo TT, Chuacouzens J, Butcher LL, Bredesen DE, Cooper JD, Valletta JS, Mobley WC, Longo FM (1997) Absence of p75 ( NTR) causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation. J Neurosci 17: 7594–7605

    Google Scholar 

  • Zimmerman L, Lendahl U, Cunningham M, McKay R, Parr B, Gavin B, Mann J, Vassileva G, McMahon A (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12: 11–24

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ibáñez, C.F. (2000). Neurotrophic Factors: Versatile Signals for Cell-Cell Communication in the Nervous System. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics