Skip to main content

Genetic Interactions During Hindbrain Segmentation in the Mouse Embryo

  • Chapter
Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

The process by which a simple flat sheet of cells in the early embryo proliferates and differentiates into the central nervous system (CNS) is one of the most fascinating problems of modern biology. This is not only because of the importance of the CNS in adult life, but also because of the enormous quantity and complexity of cell connections that have to be established with extraordinary precision. Large-scale genetic screens in invertebrate model systems such as Caenorhabditis elegans and Drosophila have revealed in significant detail the genetic components required for early CNS development and some aspects of the basic programme appear to have been conserved throughout evolution in the animal kingdom. In this chapter we will detail our current understanding of the development of the early vertebrate nervous system, with particular reference to the mouse hindbrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre D, Clarke J, Oxtoby E, Yan Y-L, Jowett T, Holder N (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122: 735–746

    PubMed  CAS  Google Scholar 

  • Amores A, Force A, Yan Y-L, Joly L, Amemiya C, Fritz A, Ho R, Langeland J, Prince V, Wang Y-L, Westerfield M, Ekker M, Postlehwait J (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282: 1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Aparicio S, Morrison A, Gould A, Gilthorpe J, Chaudhuri C, Rigby PWJ, Krumlauf R, Brenner S (1995) Detecting conserved regulatory elements with the model genome of the Japanese puffer fish Fugu rubripes. Proc Natl Acad Sci USA 92: 1684–1688

    Article  PubMed  CAS  Google Scholar 

  • Aparicio S, Hawker K, Cottage A, Mikawa Y, Zuo L, Chen E, Krumlauf R, Brenner S (1997) Organisation of the Fugu rubripes Hox clusters, evidence for continuing evolution of vertebrate Hox complexes. Nat Genet 16: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Barrow J, Capecchi M (1996) Targeted disruption of the Hoxb2 locus in mice interferes with expression of Hoxbl and Hoxb4. Development 122: 3817–3828

    PubMed  CAS  Google Scholar 

  • Becker N, Seitanidou T, Murphy P, Mattei M-G, Topilko P, Nieto MA, Wilkinson DG, Charnay P, Gilardi-Hebenstreit P (1994) Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mech Dev 47: 3–18

    Article  PubMed  CAS  Google Scholar 

  • Behringer R, Crotty DA, Tennyson VM, Brinster R, Palmiter R, Wolgemuth D (1993) Sequences 5’ of the homeobox of the Hox-1.4 gene direct tissue-specific expression of lacZ during mouse development. Development 117: 823–833

    PubMed  CAS  Google Scholar 

  • Bel S, Coré N, Djabali M, Kieboom K, Van der Lugt N, Alkema M, Van Lohuizen M (1998) Genetic interactions and dosage effects of Polycomb group genes in mice. Development 125: 3543–3551

    PubMed  CAS  Google Scholar 

  • Birgbauer E, Fraser SE (1994) Violation of cell lineage restriction compartments in the chick hindbrain. Development 120: 1347–1356

    PubMed  CAS  Google Scholar 

  • Birgbauer E, Sechrist J, Bronner-Fraser M, Fraser S (1995) Rhombomeric origin and rostro-caudal reassortment of neural crest cells revealed by intravital microscopy. Development 121: 935–945

    PubMed  CAS  Google Scholar 

  • Blumberg B, Bolado J, Moreno T, Kintner C, Evans R, Papalopulu N (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124: 373–379

    PubMed  CAS  Google Scholar 

  • Bradley LC, Snape A, Bhatt S, Wilkinson DG (1992) The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in the rhombomeres and neural crest. Mech Dev 40: 73–84

    Article  Google Scholar 

  • Bulfone A, Puelles L, Porteus M, Frohman M, Martin G, Rubenstein J (1993) Spatially-restricted expression of Dlx-1, Dlx-2 (Tes-1), GBx-2 and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13: 3155–3172

    PubMed  CAS  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of Hoxa-1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118: 1063–1075

    PubMed  CAS  Google Scholar 

  • Chan S-K, Ryoo H-D, Gould A, Krumlauf R, Mann R (1997) Switching the in vivo specificity of a minimal Hox-responsive element. Development 124: 2007–2014

    PubMed  CAS  Google Scholar 

  • Chavrier P, Zerial M, Lemaire P, Almendral J, Bravo R, Charnay P (1988) A gene encoding a protein with zinc fingers is activated during GO/G1 transition in cultured cells. EMBO J 7: 29–35

    CAS  Google Scholar 

  • Chavrier P, Vesque C, Galliot B, Vigneron M, Dollé P, Duboule D, Charnay P (1990) The segment-specific gene Krox-20 encodes a transcription factor with binding sites in the promoter of the Hox 1.4 gene. EMBO J 9: 1209–1218

    CAS  Google Scholar 

  • Chen J, Ruley H (1998) AN enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by Hoxal and Hoxbl. J Biol Chem 273: 2467024675

    Google Scholar 

  • Chen Y, Dong D, Kostetskii I, Zile MH (1996) Hensen’s node from vitamin A-deficient quail embryo induces chick limb bud duplication and retains its normal asymmetric expression of Sonic hedgehog (Shh). Dev Biol 173: 256–264

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Huang L, Russo AF, Solursh M (1992) Retinoic acid is enriched in Hensen’s node and is developmentally regulated in the early chick embryo. Proc Natl Acad Sci USA 89: 1005610059

    Google Scholar 

  • Chisaka O, Capecchi M (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox1.5. Nature 350: 473–479

    Article  PubMed  CAS  Google Scholar 

  • Chisaka O, Musci T, Capecchi M (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355: 516–520

    Article  PubMed  CAS  Google Scholar 

  • Cho K, De Robertis E (1990) Differential activation of Xenopus homeobox genes by mesoderm-inducing growth factors and retinoic acid. Genes Dev 4: 1910–1917

    Article  PubMed  CAS  Google Scholar 

  • Clarke JD, Lumsden A (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118: 151–162

    PubMed  CAS  Google Scholar 

  • Clarke JDW, Erskine L, Lumsden A (1998) Differential progenitor dispersal and the spatial origin of early neurons can explain the predominance of single-phenotype clones in the chick hindbrain. Dev Dyn 212: 14–26

    Article  PubMed  CAS  Google Scholar 

  • Condie B, Capecchi M (1993) Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrate, the atlas and axis. Development 119: 579–595

    PubMed  CAS  Google Scholar 

  • Condie BG, Capecchi MR (1994) Mice with targeted disruptions in the paralogous genes Hoxa-3 and Hoxd-3 reveal synergistic interactions. Nature 370: 304–307

    Article  PubMed  CAS  Google Scholar 

  • Conlon RA (1995) Retinoic acid and pattern formation in vertebrates. TIG 11:314–319 Conlon RA, Rossant J (1992) Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116: 357–368

    Google Scholar 

  • Cook M, Gould A, Brand N, Davies J, Strutt P, Shaknovich R, Licht J, Waxman S, Chien Z, Gluecksohn-Waelsch S, Krumlauf R, Zelent A (1995) Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proc Natl Acad Sci USA 92: 2249–2253

    Article  PubMed  CAS  Google Scholar 

  • Cordes SP, Barsh GS (1994) The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79: 1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin NM (1998) Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 128: 3445–3459

    Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates–a study in quail-chick chimeras. Development 117: 409–429

    PubMed  CAS  Google Scholar 

  • Couly GF, Grapin-Bottom A, Coltey P, Le Douarin NM (1996) The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural folds. Development 122: 3393–3407

    PubMed  CAS  Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Dale J, Vesque C, Lints T, Sampath K, Furley A, Dodd J, Placzek M (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90: 257–269

    Article  PubMed  CAS  Google Scholar 

  • Davenne M, Maconochie M, Neun R, Brunet J-F, Chambon P, Krumlauf R, Rijli F (1999) Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal developments in the rostral hindbrain. Neuron 22: 677–691

    Google Scholar 

  • Dencker L, Annerwall E, Busch C, Eriksson U (1990) Localization of specific retinoid-binding sites and expression of cellular retinoic-acid-binding protein ( CRABP) in the early mouse embryo. Development 110: 343–352

    Google Scholar 

  • Deol MS (1964) The abnormalities of the inner ear in kreisler mice. J Embryol Exp Morph 12: 475–490

    PubMed  CAS  Google Scholar 

  • Dollé P, Izpisùa-Belmonte J, Brown J, Tickle C, Duboule D (1991) Hox-4 genes and the morphogenesis of mammalian genitalia. Genes Dev 5: 1767–1776

    Google Scholar 

  • Dollé P, Lufkin T, Krumlauf R, Mark M, Duboule D, Chambon P (1993) Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1.6) mutant embryos. Proc Natl Acad Sci USA 90: 7666–7670

    Article  PubMed  Google Scholar 

  • Dollé P, Fraulob V, Kastner P, Chambon P (1994) Developmental expression of murine retinoid X receptor (RXR) genes. Mech Dev 45: 91–104

    Article  PubMed  Google Scholar 

  • Doniach T (1992) Induction of anteroposterior neural pattern in Xenopus by planar signals. Dev Suppl: 183–193

    Google Scholar 

  • Doniach T (1993) Planar and vertical induction of anteroposterior pattern during the devel- opment of the amphibian central nervous system. J Neurobiol 24: 1256–1275

    Article  PubMed  CAS  Google Scholar 

  • Doniach T, Phillip C, Gerhart J (1992) Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. Science 257: 542–545

    Article  PubMed  CAS  Google Scholar 

  • Duboule D, Dolle P (1989) The structural and functional organization of the murine Hox gene family resembles that of Drosophila homeotic genes. EMBO J 8: 1497–1505

    CAS  Google Scholar 

  • Dupé V, Davenne M, Brocard J, Dollé P, Mark M, Dierich A, Chambon P, Rijli F (1997) In vivo functional analysis of the Hoxal 3’ retinoid response element (3’ RARE). Development 124: 399–410

    PubMed  Google Scholar 

  • Durston A, Timmermans J, Hage W, Hendriks H, de Vries N, Heideveld M, Nieuwkoop P (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340: 140–144

    Article  PubMed  CAS  Google Scholar 

  • Edlund T, Jessell T (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96: 211–224

    Article  PubMed  CAS  Google Scholar 

  • Figdor MC, Stern CD (1993) Segmental organisation of embryonic diencephalon. Nature 363: 630–634

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Ann Rev Neurobiol 21: 309–345

    Article  CAS  Google Scholar 

  • Flenniken AM, Gale NW, Yancopoulos GD, Wilkinson DG (1996) Distinct and overlapping expression of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev Biol 179: 382–401

    Article  PubMed  CAS  Google Scholar 

  • Foley A, Storey K, Stern C (1997) The prechordal region lacks neural inducing ability, but can confer anterior character to more posterior neuroepithelium. Development 124: 2983–2996

    PubMed  CAS  Google Scholar 

  • Frasch M, Chen X, Lufkin T (1995) Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 121: 957–974

    PubMed  CAS  Google Scholar 

  • Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344: 431–435

    Article  PubMed  CAS  Google Scholar 

  • Frohman M, Martin G (1992) Isolation and analysis of embryonic expression of Hox4.9, a member of the murine labial-like gene family. Mech Dev 38: 55–67

    Article  PubMed  CAS  Google Scholar 

  • Frohman MA, Boyle M, Martin GR (1990) Isolation of the mouse Hox2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110: 589–607

    PubMed  CAS  Google Scholar 

  • Frohman MA, Martin GR, Cordes S, Halamek LP, Barsh GS (1993) Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant kreisler (kr). Development 117: 925–936

    PubMed  CAS  Google Scholar 

  • Gale N, Flenniken A, Compton D, Jenkins N, Copeland N, Gilbert D, Davis S, Wilkinson D, Yancopoulos G (1996a) Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate, roof plate and hindbrain segments. Oncogene 13: 1343–1352

    PubMed  CAS  Google Scholar 

  • Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG, Pawson T, Davis S, Yancopoulos GD (1996b) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Gaunt SJ, Krumlauf R, Duboule D (1989) Mouse homeo-genes within a subfamily, Hox-1.4, -2.6 and -5.1, display similar anteroposterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation. Development 107: 131–141

    PubMed  CAS  Google Scholar 

  • Gavalas A, Davenne M, Lumsden A, Chambon P, Rijli F (1997) Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124: 3693–3702

    PubMed  CAS  Google Scholar 

  • Gavalas A, Studer M, Lumsden A, Rijli F, Krumlauf R, Chambon P (1998) Hoxal and Hoxbl synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125: 1123–1136

    Google Scholar 

  • Geada AMC, Gaunt SJ, Azzawi M, Shimeld SM, Pearce J, Sharpe PT (1992) Sequence and embryonic expression of the murine Hox-3.5 gene. Development 116: 497–506

    PubMed  CAS  Google Scholar 

  • Gilardi-Hebenstreit P, Nieto A, Frain M, Mattei M, Chestier A, Wilkinson D, Charnay P (1992) An EPH-related receptor protein-tyrosine kinase gene segmentally-expressed in the developing mouse hindbrain. Oncogene 7: 2499–2506

    PubMed  CAS  Google Scholar 

  • Goddard J, Rossel M, Manley N, Capecchi M (1996) Mice with targeted disruption of Hoxbl fail to form the motor nucleus of the VIIth nerve. Development 122: 3217–3228

    PubMed  CAS  Google Scholar 

  • Gould A (1997) Functions of mammalian Polycomb-group and trithorax-group related genes. Curr Opin Genet Dev 7: 488–494

    Article  PubMed  CAS  Google Scholar 

  • Gould A, Morrison A, Sproat G, White R, Krumlauf R (1997) Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 11: 900–913

    Article  PubMed  CAS  Google Scholar 

  • Gould A, Itasaki N, Krumlauf R (1998) Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21: 39–51

    Article  PubMed  CAS  Google Scholar 

  • Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox clusters have common features of organisation and expression. Cell 57: 367–378

    Article  PubMed  CAS  Google Scholar 

  • Graham A, Heyman I, Lumsden A (1993) Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain. Development 119: 233–245

    PubMed  CAS  Google Scholar 

  • Graham A, Francis-West P, Brickell P, Lumsden A (1994) The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372: 684–686

    Article  PubMed  CAS  Google Scholar 

  • Grapin-Botton A, Bonnin M-A, Ariza-McNaughton L, Krumlauf R, LeDouarin NM (1995) Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 121: 2707–2721

    PubMed  CAS  Google Scholar 

  • Guthrie S, Lumsden A (1991) Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112: 221–229

    PubMed  CAS  Google Scholar 

  • Guthrie S, Muchamore I, Kuroiwa A, Marshall H, Krumlauf R, Lumsden A (1992) Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature 356: 157–159

    Article  PubMed  CAS  Google Scholar 

  • Guthrie S, Prince V, Lumsden A (1993) Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118: 527–538

    PubMed  CAS  Google Scholar 

  • Helmbacher F, Pujades C, Desmarquet C, Frain M, Rijli F, Chambon P, Charnay P (1998) Hoxal and Krox20 synergize to control the development of rhombomere 3. Development 125: 4739–4748

    Google Scholar 

  • Hill J, Clarke JDW, Vargesson N, Jowett T, Holder N (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech Dev 50: 3–16

    Article  PubMed  CAS  Google Scholar 

  • Hogan BLM, Thaller C, Eichle G (1992) Evidence that Hensen’s node is a site of retinoic acid synthesis. Nature 359: 237–241

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH, Garcia-Fernandez J (1996) Hox genes and chordate evolution. Dev Biol 173: 382–395

    Google Scholar 

  • Horstadius S (1950) The neural crest. Oxford University Press, London

    Google Scholar 

  • Huang D, Chen S, Langston A, Gudas L (1998) A conserved retinoic acid responsive element in the murine Hoxb-1 gene is required for expression in the developing gut. Development 125: 3235–3246

    PubMed  CAS  Google Scholar 

  • Hunt P, Krumlauf R (1991) Deciphering the Hox code: clues to patterning the branchial region of the head. Cell 66: 1075–1078

    Article  PubMed  CAS  Google Scholar 

  • Hunt P, Gulisano M, Cook M, Sham M, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R (1991a) A distinct Hox code for the branchial region of the head. Nature 353: 861–864

    Article  PubMed  CAS  Google Scholar 

  • Hunt P, Whiting J, Muchamore I, Marshall H, Krumlauf R (1991b) Homeobox genes and models for patterning the hindbrain and branchial arches. Development 112 (Suppl: Molecular and cellular basis of pattern formation): 187–196

    Google Scholar 

  • Hunt P, Ferretti P, Krumlauf R, Thorogood P (1995) Restoration of normal Hox code and branchial arch morphogenesis after extensive deletion of hindbrain neural crest. Dev Biol 168: 584–597

    Article  PubMed  CAS  Google Scholar 

  • Irving C, Nieto M, Das Gupta R, Charnay P, Wilkinson D (1996) Progressive spatial restriction of Sekl and Krox20 gene expression during hindbrain segmentation. Dev Biol 173: 26–38

    Article  PubMed  CAS  Google Scholar 

  • Itasaki N, Ichijo H, Hama C, Matsuno T, Nakamura H (1991) Establishment of rostrocaudal polarity in tectal primordium: engrailed expression and subsequent tectal polarity. Development 113: 1133–1144

    PubMed  CAS  Google Scholar 

  • Itasaki N, Sharpe J, Morrison A, Krumlauf R (1996) Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron 16: 487–500

    Article  PubMed  CAS  Google Scholar 

  • Izpisua-Belmonte J-C, Tickle C, Dolle P, Wolpert L, Duboule D (1991) Expression of homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350: 585–589

    Article  PubMed  CAS  Google Scholar 

  • Kappen C, Schugart K, Ruddle F (1989) Two steps in the evolution of Antennapedia-class vertebrate homeobox genes. Proc Natl Acad Sci USA 86: 5459–5463

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Wang B (1991) A cluster of Antennapedia-class homeobox genes in a nonsegmented animal. Science 253: 516–517

    Article  PubMed  CAS  Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformations of murine prevertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89–104

    Article  PubMed  CAS  Google Scholar 

  • Keynes R, Krumlauf R (1994) Hox genes and regionalization of the nervous system. Annu Rev Neurosci 17: 109–132

    Article  PubMed  CAS  Google Scholar 

  • Keynes R, Lumsden A (1990) Segmentation and the origins of regional diversity in the vertebrate central nervous system. Neuron 4: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Kintner C (1992) Molecular bases of early neural development in Xenopus embryos. Annu Rev Neurosci 15: 251–284

    Article  PubMed  CAS  Google Scholar 

  • Kolm P, Sive H (1995) Regulation of the Xenopus labial homeodomain genes, HoxAl and HoxD1: activation by retinoids and peptide growth factors. Dev Biol 167: 34–49

    Article  PubMed  CAS  Google Scholar 

  • Kolm P, Apekin V, Sive H (1997) Xenopus hindbrain patterning requires retinoid signaling. Dev Biol 192: 1–16

    Google Scholar 

  • Köntges G, Lumsden A (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122: 3229–3242

    PubMed  Google Scholar 

  • Krumlauf R (1992) Evolution of the vertebrate Hox homeobox genes. Bioessays 14:245–252 Krumlauf R (1993) Hox genes and pattern formation in the branchial region of the vertebrate head. TIG 9: 106–112

    Google Scholar 

  • Kulesa P, Fraser S (1998) Neural crest cell dynamics revealed by time-lapse video microscopy of whole chick explant cultures. Dev Biol 204: 327–344

    Article  PubMed  CAS  Google Scholar 

  • Kuratani SC, Eichele G (1993) Rhombomere transposition repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein. Development 117: 105–117

    PubMed  CAS  Google Scholar 

  • Lamb TM, Harland RM (1995) Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121: 3627–3636

    PubMed  CAS  Google Scholar 

  • Lammer E, Chen D, Hoar R, Agnish A, Benke P, Braun J, Curry C, Fernhoff P, Grix A, Lott I, Richard J, Sun S (1985) Retinoic acid embryopathy. New Engl J Med 313: 837–841

    Article  PubMed  CAS  Google Scholar 

  • Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, LeMeur M, Chambon P (1995) Mice deficient in cellular retinoic acid binding protein II ( CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121: 539–548

    Google Scholar 

  • Langston A, Thompson J, Gudas L (1997) Retinoic acid-responsive enhancers located 3’ of the HoxA and the HoxB gene clusters. J Biol Chem 272: 2167–2175

    Article  PubMed  CAS  Google Scholar 

  • Langston AW, Gudas LJ (1992) Identification of a retinoic acid responsive enhancer 3’ of the murine homeobox gene Hox-1.6. Mech Dev 38: 217–228

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin N (1983) The Neural Crest. Cambridge University Press, Cambridge

    Google Scholar 

  • Lemaire P, Revelant O, Bravo R, Charnay P (1988) Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci USA 85: 4691–4695

    Article  PubMed  CAS  Google Scholar 

  • Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66: 1105–1119

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hind-brain. Nature 337: 424–428

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274: 1109–1115 Lumsden A, Sprawson N, Graham A (1991) Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113: 1281–1291

    Google Scholar 

  • Lyn S, Giguere V (1994) Localisation of CRABP-I and CRABP-II mRNA in the early mouse embryo by whole-mount in situ hybridisation: implications for teratogenesis and neural development. Dev Dyn 199: 280–291

    Article  PubMed  CAS  Google Scholar 

  • MacArthur CA, Lawshe A, Xu J, Santos-Ocampo S, Heikinheimo M, Chellaiah AT, Ornitz DM (1995) FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 121: 3603–3613

    PubMed  CAS  Google Scholar 

  • Maconochie M, Nonchev S, Studer M, Chan S-K, Pöpperl H, Sham M-H, Mann R, Krumlauf R (1997) Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxbl. Genes Dev 11: 1885–1896

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Horton C, Graham A, Leonard L, Pizzey J, Siegenthaler G, Lumsden A, Eriksson U (1992) Domains of cellular retinoic acid-binding protein I ( CRABP I) expression in the hindbrain and neural crest of the mouse embryo. Mech Dev 37: 13–23

    Google Scholar 

  • Maden M, Gale E, Kostetskii I, Zile M (1996) Vitamin A deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 6: 417–426

    Article  PubMed  CAS  Google Scholar 

  • Mahmood R, Kiefer P, Guthrie S, Dickson C, Mason I (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121: 1399–1410

    PubMed  CAS  Google Scholar 

  • Mahmood R, Kiefer P, Guthrie S, Dickson C, Mason I (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121: 1399–1410

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Evans RM (1995) The RXR Heterodimers and Ophan Receptors. Cell 83: 841–850

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83: 835–839

    Article  PubMed  CAS  Google Scholar 

  • Manley N, Capecchi M (1997) Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Developmental Biology 192: 274–288

    Google Scholar 

  • Manley N, Capecchi M (1998) Hox group 3 paralogs regulate the development and migration of the thymus, thyroid and parathyroid glands. Dev Biol 195: 1–15

    Google Scholar 

  • Manzanares M, Cordes S, Kwan C-T, Sham M-H, Barsh G, Krumlauf R (1997) Segmental regulation of Hoxb3 by kreisler. Nature 387: 191–195

    Article  PubMed  CAS  Google Scholar 

  • Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R (1999a) Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126: 759–769

    PubMed  CAS  Google Scholar 

  • Manzanares M, Trainor P, Nonchev S, Ariza-mcNaughton L, Brodie J, Gould A, Marshall H, Morrison A, Kwan C-T, Sham M-H, Wilkinson D, Krumlauf R (1999b) The role of kreisler in segmentation during hindbrain development. Dev Biol 211: 220–237

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthums. Dev Biol 161: 19–37

    Article  Google Scholar 

  • Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7: 1714–1738

    Article  PubMed  CAS  Google Scholar 

  • Mark M, Lufkin T, Vonesch J-L, Ruberte E, Olivo J-C, Dollé P, Gorry P, Lumsden A, Chambon P (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119: 319–338

    PubMed  CAS  Google Scholar 

  • Marshall H, Nonchev S, Sham MH, Muchamore I, Lumsden A, Krumlauf R (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360: 737–741

    Article  PubMed  CAS  Google Scholar 

  • Marshall H, Studer M, Pöpperl H, Aparicio S, Kuroiwa A, Brenner S, Krumlauf R (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370: 567–571

    Article  PubMed  CAS  Google Scholar 

  • Marshall H, Morrison A, Studer M, Pöpperl H, Krumlauf R (1996) Retinoids and Hox genes. FASEB 10: 969–978

    CAS  Google Scholar 

  • Martinez S, Alvarado-Mallart RM (1990) Expression of the homeobox Chicken gene in chick/ quail chimeras with inverted mes-metencephalic grafts. Dev Biol 139: 432–436

    Article  PubMed  CAS  Google Scholar 

  • Martinez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene engrailed. Neuron 6: 971–981

    Article  PubMed  CAS  Google Scholar 

  • Martinez S, Marin F, Nieto MA, Puelles L (1995) Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mech Dev 51: 289–303

    Article  PubMed  CAS  Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68: 283–302

    Article  PubMed  CAS  Google Scholar 

  • McKay I, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Biol: 370–378

    Google Scholar 

  • McKay I, Lewis J, Lumsden A (1997) Organization and development of facial motor neurons in the kreisler mutant mouse. Eur J Neurosci 9: 1499–1506

    Article  PubMed  CAS  Google Scholar 

  • McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120: 21992211

    Google Scholar 

  • Mellitzer G, Xu Q, Wilkinson D (1999) Restriction of cell intermingling and communication by Eph receptors and ephrins. Nature 400: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn C, Ruberte E, Le Meur M, Morriss-Kay G, Chambon P (1991) Developmental analysis of the retinoic acid-inducible RAR-beta 2 promoter in transgenic animals Development 113: 723–734

    CAS  Google Scholar 

  • Mendelsohn C, Larkin S, Mark M, LeMeur M, Clifford J, Zelent A, Chambon P (1994) RAR isoforms: distinct transcriptional control by retinoic acid and specific spatial patterns of promoter activity during mouse embryonic development. Mech Dev 45: 227–241

    Article  PubMed  CAS  Google Scholar 

  • Moens CB, Yan Y-L, Appel B, Force AG, Kimmel CB (1996) valentino: a zebrafish gene required for normal hindbrain segmentation. Development 122: 3981–3990

    Google Scholar 

  • Moens CB, Cordes SP, Giorgianni MW, Barsh GS, Kimmel CB (1998) Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125: 381–391

    PubMed  CAS  Google Scholar 

  • Moroni M, Vigano M, Mavilio F (1993) Regulation of the human HoxD4 gene by retinoids. Mech Dev 44: 139–154

    Article  PubMed  CAS  Google Scholar 

  • Morrison A (1998) 1 + 1 = 4 and much much more. Bioessays 20:794–797

    Google Scholar 

  • Morrison A, Chaudhuri C, Ariza-McNaughton L, Muchamore I, Kuroiwa A, Krumlauf R (1995) Comparative analysis of chicken Hoxb-4 regulation in transgenic mice. Mech Dev 53: 47–59

    Article  PubMed  CAS  Google Scholar 

  • Morrison A, Moroni M, Ariza-McNaughton L, Krumlauf R, Mavilio F (1996) In vitro and transgenic analysis of a human HoxD4 retinoid-responsive enhancer. Development 122: 1895–1907

    PubMed  CAS  Google Scholar 

  • Morrison A, Ariza-McNaughton L, Gould A, Featherstone M, Krumlauf R (1997) HoxD4 and regulation of the group 4 paralog genes. Development 124: 3135–3146

    Google Scholar 

  • Morriss GM, Thorogood PV (1978) An approach to cranial neural crest migration and differentiation in mammalian embryos. In: Johnson MH (ed) Development in mammals. vol 3. Elsevier North-Holland, Amsterdam, pp 363–411

    Google Scholar 

  • Murphy P, Hill RE (1991) Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111: 61–74

    PubMed  CAS  Google Scholar 

  • Murphy P, Davidson DR, Hill RE (1989) Segment-specific expression of a homeobox-containing gene in the mouse hindbrain. Nature 341: 156–159

    Article  PubMed  CAS  Google Scholar 

  • Nardelli J, Gibson T, Vesque C, Charnay P (1991) Base sequence discrimination by zinc-finger DNA-binding domains. Nature 349: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Nieto MA, Bradley LC, Wilkinson DG (1991) Conserved segmental expression of Krox-20 in the vertebrate hindbrain and its relationship to lineage restriction. Development Suppl 2: 59–62

    Google Scholar 

  • Nieto MA, Gilardi HP, Charnay P, Wilkinson DG (1992a) A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. Development 116: 1137–1150

    PubMed  CAS  Google Scholar 

  • Nieto MA, Gilardi-Hebenstreit P, Charnay P, Wilkinson D (1992b) A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. Development 116: 1137–1150

    PubMed  CAS  Google Scholar 

  • Nieuwkoop P (1952) Activation and organisation of the central nervous system in amphibians. J Exp Zoo! 120: 1–108

    Google Scholar 

  • Nieuwkoop P (1973) The organisation centre of the amphibian embryo: its origin, spatial organisation and morphogenetic action. Adv in Morphog 10: 1–39

    CAS  Google Scholar 

  • Nieuwkoop P (1985) Inductive interactions in early amphibian development and their general nature. J Embryol Exp Morph 89 (suppl.): 333–347

    PubMed  Google Scholar 

  • Noden D (1983) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96: 144–165

    Article  PubMed  CAS  Google Scholar 

  • Nonchev S, Maconochie M, Vesque C, Aparicio S, Ariza-McNaughton L, Manzanares M, Maruthainar K, Kuroiwa A, Brenner S, Charnay P, Krumlauf R (1996a) The conserved role of Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc Natl Acad Sci USA 93: 9339–9345

    Article  PubMed  CAS  Google Scholar 

  • Nonchev S, Vesque C, Maconochie M, Seitanidou T, Ariza-McNaughton L, Frain M, Marshall H, Sham MH, Krumlauf R, Charnay P (1996b) Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122: 543–554

    PubMed  CAS  Google Scholar 

  • Ogura T, Evans R (1995a) Evidence for two distinct retinoic acid response pathways for Hoxb-1 gene regulation. Proc Natl Acad Sci USA 92: 392–396

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Evans R (1995b) A retinoic acid-triggered cascade of Hoxb-1 gene activation. Proc Natl Acad Sci USA 92: 387–391

    Article  PubMed  CAS  Google Scholar 

  • Oxtoby E, Jowett T (1993) Cloning of the zebra fish Krox-20 gene (Krx-20) and its expression during hindbrain development. Nucleic Acids Res 21: 1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Packer A, Crotty D, Elwell V, Wolgemuth D (1998) Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element. Development 125: 1991–1998

    PubMed  CAS  Google Scholar 

  • Papalopulu N, Kintner C (1996) A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122: 3409–3418

    PubMed  CAS  Google Scholar 

  • Papalopulu N, Clarke J, Bradley L, Wilkinson D, Krumlauf R, Holder N (1991a) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113: 1145–1159

    PubMed  CAS  Google Scholar 

  • Papalopulu N, Lovell-Badge R, Krumlauf R (1991b) The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays collinear sensitivity of retinoic acid in F9 cells and Xenopus embryos. Nucleic Acids Res 19: 5497–5506

    Article  PubMed  CAS  Google Scholar 

  • Paro R (1993) Mechanisms of heritable gene repression during development of Drosophila. Curr Opin Cell Biol 5: 999–1005

    Article  PubMed  CAS  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet J-F (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124: 4065–4075

    PubMed  CAS  Google Scholar 

  • Pirrotta V (1997a) Chromatin-silencing mechanisms in Drosophila maintain patterns of gene expression. Trends Genet 13: 314–318

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta V (1997b) PcG complexes and chromatin silencing. Curr Opin Genet Dev 7:249–258 Pöpperl H, Featherstone M (1992) An autoregulatory element of the murine Hox-4.2 gene. EMBO J 11: 3673–3680

    Google Scholar 

  • Pöpperl H, Featherstone M (1993) Identification of a retinoic acid response element upstream of the murine Hox-4.2 gene. Mol Cell Biol 13: 257–265

    PubMed  Google Scholar 

  • Pöpperl H, Bienz M, Studer M, Chan S, Aparicio S, Brenner S, Mann R, Krumlauf R (1995) Segmental expression of Hoxbl is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx. Cell 81: 1031–1042

    Article  PubMed  Google Scholar 

  • Prince V, Lumsden A (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120: 911–923

    Google Scholar 

  • Rijli FM, Mark M, Lakkaraju S, Dierich A, Dolle P, Chambon P (1993) A homeotic transformation is generated in the rostra! branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75: 1333–1349

    Article  PubMed  CAS  Google Scholar 

  • Robinson V, Smith A, Flenniken AM, Wilkinson DG (1997) Role of Eph receptors and ephrins in neural crest pathfinding Cell Tissue Res 290: 265–274

    CAS  Google Scholar 

  • Rubenstein JLR, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266: 578–580

    Article  PubMed  CAS  Google Scholar 

  • Ruberte E, Friederich V, Morriss-Kay G, Chambon P (1992) Differential distribution patterns of CRABP-I and CRABP-II transcripts during mouse embryogenesis. Development 115: 973989

    Google Scholar 

  • Ruiz i Altaba A (1992) Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development 116: 67–80

    Google Scholar 

  • Ruiz i Altaba A (1994) Pattern formation in the vertebrate neural plate. TINS 17:233–243 Ruiz J, Robertson E (1994) The expression of the receptor-protein tyrosine kinase gene, eck, is highly restricted during early mouse development. Mech Dev 46: 87–100

    Google Scholar 

  • Saldivar JR, Sechrist JW, Krull CE, Ruffin S, Bronner-Fraser M (1997) Dorsal hindbrain ablation results in the rerouting of neural crest migration and the changes in gene expression, but normal hyoid development. Development 124: 2729–2739

    PubMed  CAS  Google Scholar 

  • Saxen L (1989) Neural induction. Int J Dev Biol 33: 21–48

    PubMed  CAS  Google Scholar 

  • Schneider-Maunoury S, Topilko P, Seitanidou T, Levi G, Cohen-Tannoudji M, Pournin S, Babinet C, Charnay P (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75: 1199–1214

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Maunoury S, Seitanidou T, Charnay P, Lumsden A (1997) Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124: 1215–1226

    PubMed  CAS  Google Scholar 

  • Schoorlemmer J, Marcos-Gutiérrez, Were F, Martinez R, García E, Satijn D, Otte A, Vidal M (1997) RinglA is a transcriptional repressor that interacts with polycomb-M33 and is ex-pressed at rhombomere boundaries in the mouse hindbrain. EMBO J 16: 5930–5942

    CAS  Google Scholar 

  • Sechrist J, Bronner-Fraser M (1991) Birth and differentiation of reticular neurons in the chick hindbrain: ontogeny of the first neuronal population. Neuron 7: 947–963

    Article  PubMed  CAS  Google Scholar 

  • Sechrist J, Serbedzija GN, Scherson T, Fraser SE, Bronner-Fraser M (1993) Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development 118 (3): 691–703

    PubMed  CAS  Google Scholar 

  • Sechrist J, Scherson T, Bronner-Fraser M (1994) Rhombomere rotation reveals that multiple mechanisms contribute to segmental pattern of hindbrain neural crest migration. Development 120: 1777–1790

    PubMed  CAS  Google Scholar 

  • Seitanidou T, Schneider-Manunoury S, Desmarquet C, Wilkinson D, Charnay P (1997) Krox20 is a key regulator of rhombomere-specific gene expression in the developing hindbrain. Mech Dev 65: 31–42

    Google Scholar 

  • Serbedzija G, Fraser S, Bronner-Fraser M (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116: 297–307

    PubMed  CAS  Google Scholar 

  • Sham M-H, Hunt P, Nonchev S, Papalopulu N, Graham A, Boncinelli E, Krumlauf R (1992) Analysis of the murine Hox-2.7 gene: conserved alternative transcripts with differential distributions in the nervous system and the potential for shared regulatory regions. EMBO J 11: 1825–1836

    CAS  Google Scholar 

  • Sham MH, Vesque C, Nonchev S, Marshall H, Frain M, Das Gupta R, Whiting J, Wilkinson D, Charnay P, Krumlauf R (1993) The zinc finger gene Krox-20 regulates Hoxb-2 (Hox2.8) during hindbrain segmentation. Cell 72: 183–196

    Article  PubMed  CAS  Google Scholar 

  • Sharpe C, Goldstone K (1997) Retinoid receptors promote primary neurogenesis in Xenopus. Development 124: 515–523

    PubMed  CAS  Google Scholar 

  • Sieweke M, Tekotte H, Frampton J, Graf T (1996) MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85: 49–60

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Arcioni L, Andrews PW, Boncinelli E, Mavilio F (1990) Sequential activation of Hox2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346: 763–766

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Nigro V, Faiella A, D’Esposito M, Stornaiuolo A, Mavilio F, Boncinelli E (1991) Differential regulation by retinoic acid of the homebox genes of the four Hox loci in human embryonal carcinoma cells. Mech Dev 33: 215–227

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, Avantaggiato V, Moroni MC, Mavilio F, Arra C, Cotelli F, Nigro V, Acampora D (1995) Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech of Dev 51: 83–98

    Article  CAS  Google Scholar 

  • Slack JMW, Tannahill D (1992) Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. Development 114: 285–302

    Google Scholar 

  • Smith A, Robinson V, Patel K, Wilkinson DG (1997) The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr Biol 7: 561–570

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Grunwald DJ, Myers PZ (1993) Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117: 1261–1274

    PubMed  CAS  Google Scholar 

  • Streit A, Sockanathan S, Pérez L, Rex N, Scotting P, Sharpe P, Lovell-Badge R, Stern C (1997) Preventing the loss of competence for neural induction: role of HGF/SF, L% and Sox-2. Development 124: 1191–1202

    PubMed  CAS  Google Scholar 

  • Studer M, Pöpperl H, Marshall H, Kuroiwa A, Krumlauf R (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265: 1728–1732

    Article  PubMed  CAS  Google Scholar 

  • Studer M, Lumsden A, Ariza-McNaughton L, Bradley A, Krumlauf R (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli F, Chambon P, Krumlauf R (1998) Genetic interaction between Hoxal and Hoxbl reveal new roles in regulation of early hindbrain patterning. Development 125: 1025–1036

    PubMed  CAS  Google Scholar 

  • Svaren J, Sevetson B, Golda T, Stanton J, Swirnoff A, Milbrandt J (1998) Novel mutants of NAB corepressors enhance activation by Egr transactivators. EMBO J 17: 6010–6019

    CAS  Google Scholar 

  • Swiatek PJ, Gridley T (1993) Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox-20. Genes Dev 7: 20712084

    Google Scholar 

  • Takihara Y, Tomotsune D, Shirai M, Katoh-Fukui Y, Nishii K, Motaleb M, Nomura M, Tsuchiya R, Fujita Y, Shibata Y, Higashinakagawa T, Shimada K (1997) Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development 124: 3673–3682

    PubMed  CAS  Google Scholar 

  • Taneja R, Thisse B, Rijli FM, Thisse C, Bouillet P, Dolle P (1996) The expression pattern of the mouse receptor tyrosine kinase gene MDK1 is conserved through evolution and requires Hoxa-2 for rhombomere-specific expression in mouse embryos. Dev Biol 177: 397–412

    Article  PubMed  CAS  Google Scholar 

  • Theil T, Frain M, Gilardi-Hebenstreit P, Flenniken A, Charnay P, Wilkinson D (1998) Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under the direct transcriptional control of Krox20. Development 125: 443–452

    PubMed  CAS  Google Scholar 

  • Theil T, Ariza-McNaughton L, Manzanares M, Krumlauf R, Wilkinson D (1999) kreisler regulates rostrocaudal identity in the hindbrain. Development (in press)

    Google Scholar 

  • Toivonen S, Saxen L (1968) Morphogenetic interaction of presumptive neural and mesodermal cells mixed in different ratios. Science 158: 539–540

    Article  Google Scholar 

  • Tosney K (1982) The segregation and early migration of cranial neural crest cells in the avian embryo. Dev Biol 89: 13–24

    Article  PubMed  CAS  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Adv Anat Embryol Cell Biol 41: 1–88

    Google Scholar 

  • Vesque C, Charnay P (1992) Mapping the functional regions of the segment specific transcription factor Krox-20. Nuclei Acids Res 10: 2485–2492

    Article  Google Scholar 

  • Vesque C, Maconochie M, Nonchev S, Ariza-McNaughton L, Kuroiwa A, Charnay P, Krumlauf R (1996) Hoxb-2 transcriptional activation by Krox-20 in vertebrate hindbrain requires an evolutionary conserved cis-acting element in addition to the Krox-20 site. EMBO J 15: 5383–5896

    Google Scholar 

  • Whiting J, Marshall H, Cook M, Krumlauf R, Rigby PWJ, Stott D, Allemann RK (1991) Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev 5: 2048–2059

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson D, Krumlauf R (1990) Molecular approaches to the segmentation of the hindbrain. Trends Neurosci 13: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG, Bhatt S, Chavrier P, Bravo R, Charnay P (1989a) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337: 461–465

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (1989b) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341: 405–409

    Article  PubMed  CAS  Google Scholar 

  • Wingate R, Lumsden A (1996) Persistence of rhombomeric organisation in the postsegmental avian hindbrain. Development 122: 2143–2152

    PubMed  CAS  Google Scholar 

  • Wizenmann A, Lumsden A (1997) Segregation of rhombomeres by differential chemoaffinity. Mol Cell Neurosci 9: 448–459

    Article  PubMed  CAS  Google Scholar 

  • Woo K, Fraser S (1997) Specification of the zebrafish nervous system by non-axial signals. Science 277: 254–257

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Alldus G, Holder N, Wilkinson DG (1995) Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121: 4005–4016

    PubMed  CAS  Google Scholar 

  • Xu Q, Mellitzer G, Robinson V, Wilkinson D (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399: 267–271

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Kim H-J, Marshall H, Gendron-Maguire M, Lucas AD, Baron A, Gudas LJ, Gridley T, Krumlauf R, Grippo JF (1994) Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120: 2431–2442

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trainor, P.A., Manzanares, M., Krumlauf, R. (2000). Genetic Interactions During Hindbrain Segmentation in the Mouse Embryo. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics