Skip to main content

From Spontaneous to Induced Neurological Mutations: A Personal Witness of the Ascent of the Mouse Model

  • Chapter
Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

The mouse is arguably the most versatile animal model for studying the mechanisms of normal development and the pathogenesis of congenital malformations of the human nervous system. It does not offer the enormous potentials for manipulation by molecular genetics of small invertebrates, nor does it have the advantage of a large brain size and the similarity to the human that has been exploited by neuroanatomists and neurophysiologists in the nonhuman primates. However, as a small, relatively fast-reproducing mammal, with several well-defined inbred strains, it has became an unexcelled tool in modern developmental neurobiology. In addition, with the impeding completion of its genome sequence, the enlargement of the repertoire of spontaneous and induced mutations, combined with the creation of mosaic animals, the mouse has become an essential model system in almost every area of neurobiology and experimental neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acampora D, Barone P, Simeone A (1999) Otx genes in corticogenesis and brain development. Cerebral Cortex 9: 533–542

    Article  PubMed  CAS  Google Scholar 

  • Anton SA, Cameron RS, Rakic P (1996) Role of neuron-glial junctional proteins in the maintenance and termination of neuronal migration across the embryonic cerebral wall. J Neurosci 16: 2283–2293

    PubMed  CAS  Google Scholar 

  • Arimatsu Y, Miyamoto M, Nihonmatsu I, Hirata K, Urataini Y, Hatanka Y, Takiguchi-Hoyash Y (1992) Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc Natl Acad Sci USA 89: 8879–8883

    Article  PubMed  CAS  Google Scholar 

  • Bar I, Lambert de Rouvroit C, Royaux I, Kritzman DB, Dernoncourt C, Rulelle D, Beckers MC, Goffinett A (1995) YAC containing the reeler locus with preliminary characterization of candidate gene fragments. Genomics 26: 543–546

    Article  PubMed  CAS  Google Scholar 

  • Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21: 326–329

    Article  PubMed  CAS  Google Scholar 

  • Benzer S (1973) Genetic dissection of behavior. Sci Am 229: 24–37

    Article  PubMed  CAS  Google Scholar 

  • Brown SDM, Peters J (1996) Combining mutagenesis and genomics in the mouse–closing the phenotype gap. Trends Genet 12: 443–445

    Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244: 12881292

    Google Scholar 

  • Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon 3[H]-thymidine autoradiography. Dev Brain Res 4: 293–302

    Article  Google Scholar 

  • Caviness VS Jr, Crandall JE, Edwards A (1988) The reeler malformation. In: Peters A, Jones EG (eds) Cerebral Cortex. Plenum, New York, pp 59–89

    Chapter  Google Scholar 

  • Caviness VS Jr, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1: 297–326

    Article  PubMed  Google Scholar 

  • Caviness VS Jr, Sidman RL (1973) Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol 148: 141–152

    Article  PubMed  Google Scholar 

  • Caviness VS Jr, So DK, Sidman RL (1972) The hybrid reeler mouse. J Hered 63: 241–246

    PubMed  Google Scholar 

  • Chen JS, Kelz MB, Zeng GQ, Sakai N, Steffen C, Shockett PE, Picciotto MR, Duma RS, Nestler EJ (1998) Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol 54: 495–503

    PubMed  CAS  Google Scholar 

  • Cohen-Tanoudji M, Babinet C, Wassef M (1994) Early intrinsic regional specification of the mouse somatosensory cortex. Nature 368: 460–463

    Article  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284: 1670–1672

    Article  PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen S-C, Soares HD, Morgan JI, Curren T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719–723

    Article  PubMed  Google Scholar 

  • des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrie A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly JA (1998) Novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92: 51–61

    Article  PubMed  Google Scholar 

  • Donoghue MJ, Rakic P (1999) Molecular gradients and compartments in the embryonic primate cerebral cortex. Cerebral Cortex 9: 586–600

    Google Scholar 

  • dctlparEccles JC, Ito M, Szentagothai J (1967) The Cerebellum as a Neuronal Machine. Springer, Berlin

    Google Scholar 

  • Falconer DS (1951) Two new mutants “trembler” and “reeler” white neurological actions in the house mouse (Mus musculus). J Genet 50: 192–201

    Article  Google Scholar 

  • Gitton Y, Cohen-Tannoudji M, Wassef M (1999) Role of thalamic axons in the expression of H-2Z1, a mouse somatosensory cortex specific marker. Cerebral Cortex 9: 611–620

    Article  PubMed  CAS  Google Scholar 

  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23: 257–271

    Google Scholar 

  • Goffinet AM (1979) An early developmental defect in cerebral cortex of the reeler mouse. A morphological study leading to a hypothesis concerning the action of the mutant gene. Anat Embryol 157: 205–216

    Article  PubMed  CAS  Google Scholar 

  • Godowitz D, Cushing R, Lowell E, D’Arcangelo G, Sheldon M, Sweet H, Davisson M, Staindler D, Curren T (1997) Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite the presence of Reelin. J Neurosci 17: 8767–8777

    Google Scholar 

  • Goldowitz D, Mullen RJ (1982) Granule cell as a site of gene action in the weaver mouse cerebellum: evidence for heterozygous mutant chimeras. J Neurosci 2: 1474–1485

    PubMed  CAS  Google Scholar 

  • Hamburgh M (1963) Analysis of the postnatal developmental effects of “reeler”, a neurological mutation in mice. A study in developmental genetics. Dev Biol 8: 165–185

    Article  Google Scholar 

  • Hatanaka Y, Jones EG (1999) Novel genes expressed in the developing medial cortex. Cerebral Cortex 9: 577–585

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22: 511–539

    Article  PubMed  CAS  Google Scholar 

  • Herrup K (1996) The weaver mouse: a most cantankerous rodent. Proc Natl Acad Sci USA 93:10 541–10 542

    Google Scholar 

  • Herrup K, Mullen RJ (1979) Staggerer chimeras: intrinsic nature of Purkinje cell defects and implications for neuronal cerebellar development. Brain Res 178: 443–457

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Dembitzer HM (1973) Cerebellar alteration in the weaver mouse. J Comp Biol 56: 478–486

    CAS  Google Scholar 

  • Hirotsune S, Takahara T, Sasaki N, Hirose K, Yoshiki A, Ohashi T, Kusakabe M, Murakami Y, Muramatsu M, Watanabe S, Nakao K, Katsuki M, Hayashizaki Y (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nat Genet 10: 77–83

    Article  PubMed  CAS  Google Scholar 

  • Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov PD, Smalheiser NR, Davis JM, Pandey NG, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15 718–15 723

    Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260: 95–97

    Article  PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15: 311–321

    Article  PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (1998) Changes in cell cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA 95: 1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Kuan C, Elliot E, Flavell RA, Rakic P (1997) Restrictive clonal allocation in the chimeric mouse brain. Proc Natl Acad Sci USA 94: 3374–3379

    Article  PubMed  CAS  Google Scholar 

  • Kuan C, Yang DD, Semanta Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The Jnkl and Jnk2 protein kinases are required for regional-specific apoptosis during early brain development. Neuron 22: 667–676

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuang C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Haydar T, Kuan C, Yong G, Taya C, Karasuyama A, Su S-H, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking Caspase-9. Cell 94: 325–333

    Article  PubMed  CAS  Google Scholar 

  • Lambert de Rouvroit C, Goffinet AM (1998) The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol 150: 1–108

    Article  Google Scholar 

  • Landis DMD, Reese TS (1977) Structure of the Purkinje cell membrane in staggerer and weaver mutant mouse. J Comp Neurol 171: 247–260

    Article  PubMed  CAS  Google Scholar 

  • Lane PW (1964) Personal communication. Mouse Lett 30: 32

    Google Scholar 

  • Leisi P, Stewart RR, Akinshuola E, Wright J (1999) Weaver cerebellar granule neurons show altered expression of NMDA receptor subunit both in vivo and in vitro. J Neurobiol 38: 441–454

    Article  Google Scholar 

  • Levitt P (1994) Experimental approaches that reveal principles of cerebral cortical development. In: The Cognitive Neurosciences. MIT Press, Cambrige, pp 147–163

    Google Scholar 

  • Lyon MF, Searle G (1989) Genetic variants and strains of the laboratory mouse. 2nd Edn. Oxford University Press, Oxford

    Google Scholar 

  • Meissirel C, Wilder KC, Chalupa LM, Rakic P (1997) Early divergence of M and P visual subsystems in the embryonic primate brain. Proc Natl Acad Sci USA 94: 5900–5905

    Article  PubMed  CAS  Google Scholar 

  • Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14 410–14 416

    Google Scholar 

  • Miyashita-Lin EM, Hevner R, Montzka Wassarman K, Martinez S, Rubenstein JLR (1999) Early neocortical regionalization in the absence of thalamic innervation. Science 285: 906–909

    Article  PubMed  CAS  Google Scholar 

  • Mullen RJ, Herrup K (1979) Chimeric analysis of mouse cerebellar mutants. In: Breakefield XO (ed) Genetic Approacehes to the Nervous System. Elsevier, Amsterdam, pp 173–196

    Google Scholar 

  • Mullen RJ, Hamre KM, Goldowitz D (1997) Cerebellar mutant mice and chimeras revisited. Perspec Dev Neurobiol 5: 43–55

    CAS  Google Scholar 

  • Ogawa M, Miyata T, Nakajima K, Yagyu K, Selke M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associaterd antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14: 1–20

    Article  CAS  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Patil N, Cox DR, Bhat D, Faham RT, Spencer C, Davidson MT (1995) A potassium channel muation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11: 126–129

    Article  PubMed  CAS  Google Scholar 

  • Pearlman AL, Faust PL, Hatten ME, Brunstorm JE (1998) New directions for neuronal migration. Curr Opin Neurobiol 8: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay S, Webster HF (1970) The fine structure of the nervous system: the cells and their processes. Harper and Row, New York

    Google Scholar 

  • Picciotto MR, Wickman K (1998) Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 78: 1131–1163

    PubMed  CAS  Google Scholar 

  • Pinto-Lord CM, Evrard E, Caviness VS Jr (1982) Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Dev Brain Res 4: 379–339

    Article  Google Scholar 

  • Price DL, Sisodia SS, Borchelt DR (1998) Genetic neurodegenerative dieseaes: the human illness and transgenic models. Science 282: 1079–1983

    Article  PubMed  CAS  Google Scholar 

  • Qu H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S (1999) Processing of the Notch ligand Delta by metalloprotease Kuzbanian. Science 283: 94–98

    Article  Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141: 283–312

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145: 61–84

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1976) Synaptic specificity in the cerebellar cortex: study of anomalous circuits induced by a single gene mutation in mice. In: The Synapse. Cold Spring Harbor Symp Quant Biol 40: 333–346

    Google Scholar 

  • Rakic P (1981) Development of visual centers in ttie primate brain depends on binocular competition before birth. Science 214: 928–931

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241: 170–176

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1995) A small step for the cell–a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18: 383–388

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14: 1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Riley KP (1983) Regulation of axon numbers in the primate optic nerve by prenatal binocular competition. Nature 305: 135–137

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1968) Supravital DNA synthesis in the developing human and mouse brain. J Neuropath Exp Neurol 27: 246–276

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman R (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwickl-Gesch 129: 53–82

    Article  CAS  Google Scholar 

  • Rakic P, Sidman RL (1970) Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol 139: 473–500

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1972) Synaptic organization of displaced and disoriented cerebellar cortical neurons in reeler mice. J Neuropath Exp Neurol 31: 192

    Google Scholar 

  • Rakic P, Sidman RL (1973a) Weaver mutant mouse cerebellum; defective neuronal migration secondary to specific abnormality of Bergmann glia. Proc Natl Acad Sci USA 70: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1973b) Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 152: 103–132

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1973c) Organization of cerebellar cortex secondary to deficit of granular cells in weaver mutant mice. J Comp Neurol 152: 133–162

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132: 45–72

    Article  PubMed  CAS  Google Scholar 

  • Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein b-subunit-like repeats. Nature 364: 717–721

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JLR, Rakic P (1999) Genetic control of cortical development. Cerebral Cortex 9: 521–523

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JLR, Anderson S, Shi L, Miyashita-Lin E, Bulfone A, Hevner R (1999) Genetic control of cortical regionalization and connectivity. Cerebral Cortex 9: 524–532

    Article  PubMed  CAS  Google Scholar 

  • Schimenti J, Bucan M (1998) Functional genomics in the mouse: phenotype-based mutagenesis screens. Genome Resarch 8: 698–710

    CAS  Google Scholar 

  • Sestan N, Artavanis-Tsakonas S, Rakic P (1999) Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. Science 286: 741–746

    Article  PubMed  CAS  Google Scholar 

  • Sidman RL (1970) Autoradiographic methods and principles for study of the nervous system with thymidine-H3. In: Nauta WJH, Ebbeson SOE (eds) Contemporary Research Methods in Neuroanatomy. Springer, Berlin, Heildelberg, New York, pp 252–274

    Chapter  Google Scholar 

  • Sidman RL, Green MC, Appel SH (1965) Catalog of the Neurological Mutants of the Mouse. Cambridge Harvard University Press, Cambridge

    Google Scholar 

  • Soriano E, Dumesnil N, Auladell C, Cohen-Tannoudji M, Sotelo C (1995) Molecular heterogeneity of progenitors and radial migration in the developing cerebral cortex revealed by transgenic expression. Proc Natl Acad Sci USA 92: 11676–11680

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C (1973) Permanence and fate of paramembranous synaptic specializations in mutants and experimental animals. Brain Res 62: 345–351

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C (1975) Dendritic abnormalities of Purkinje cells in cerebellum of neurological mutant mice (Weaver and Staggerer). Adv Neurol 12: 335–351

    PubMed  CAS  Google Scholar 

  • Sotelo C, Changeux J-P (1974) Trans-synaptic degeneration “en cascade” in the cerebellar cortex of staggerer mutant mice. Brain Res 67: 519–526

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C, Mariani J (1999) Resarch strategies for the analysis of neurological mutants of the mouse. In: Crusio WE, Gerlai RT (eds) Molecular genetics. Techniques for behavioral neuroscience. Elsevier, Amsterdam

    Google Scholar 

  • Sundberg JP, Boggess D (2000) Systematic approach to evaluation of mouse mutations. CRC Press, Boca Raton

    Google Scholar 

  • Takahashi JS, Pinto LH, Holtz Vitaterna M (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264: 1724–1733

    Article  PubMed  CAS  Google Scholar 

  • Tan S-S, Kalloniatis M, Sturm K, Tam PPL, Reese BE, Faulkner-Jones B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neo-cortex. Neuron 21: 295–304

    Article  PubMed  CAS  Google Scholar 

  • Ware ML, Fox JW, Gonzalez JL, Lambert de Rouvroit C, Russo CJ, Chua SC, Goffinet AM, Walch CA (1997) Aberrent splicing of a mouse disabled homolog, mdabl, in the scrambler mouse. Neuron 19: 239–246

    Article  PubMed  CAS  Google Scholar 

  • Walsh CA (1999) Genetic malformations of the human cerebral cortex. Neuron 23: 19–29

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Storm RC, Godowitz D (1998) Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J Neurosci 18: 138–146

    PubMed  CAS  Google Scholar 

  • Wilson L, Sotelo C, Caviness VS Jr (1981) Heterologous synapses upon Purkinje-cells in the cerebellum of the reeler mutant mouse–an experimental light and electron-microscopic study. Brain Res 213: 63–82

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Kuan C, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389: 865–870

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rakic, P. (2000). From Spontaneous to Induced Neurological Mutations: A Personal Witness of the Ascent of the Mouse Model. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics