Skip to main content

The Chimaeric Origin of Mitochondria: Photosynthetic Cell Enslavement, Gene-Transfer Pressure, and Compartmentation Efficiency

  • Chapter
Origin of Mitochondria and Hydrogenosomes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achleitne G, Gaigg B, Krasser A, Kainersdorfer E, Kohlwein SD, Perktold A, Zellnig G, Daum G (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 264:545–553.

    Article  PubMed  CAS  Google Scholar 

  • Ahting U, Waizenegger T, Neupert W, Rapaport D (2005) Signal-anchored proteins follow a unique insertion pathway into the outer membrane of mitochondria. J Biol Chem 280: 48–53.

    PubMed  CAS  Google Scholar 

  • Allen JF, Puthiyaveetil S, Strom J, Allen CA (2005) Energy transduction anchors genes in organelles. BioEssays 27:426–435.

    Article  PubMed  CAS  Google Scholar 

  • Amiri H, Karlberg O, Andersson SG (2003) Deep origin of plastid/parasite ATP/ADP translocases. J Mol Evol 56:137–150.

    Article  PubMed  CAS  Google Scholar 

  • Amos LA, van den Ent F, Lowe J (2004) Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 16:24–31.

    Article  PubMed  CAS  Google Scholar 

  • Andersson SG, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci 358:165–177; discussion 177–179.

    Google Scholar 

  • Bass D, Moreira D, López-García P, Polet S, Chao EE, von der Heyden S, Pawlowski J, Cavalier-Smith T (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156:149–161.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya SN, Chatterjee S, Goswami S, Tripathi G, Dey SN, Adhya S (2003) “Ping-pong” interactions between mitochondrial tRNA import receptors within a multiprotein complex. Mol Cell Biol 23:5217–5224.

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61:456–502.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256:463–468.

    Article  Google Scholar 

  • Cavalier-Smith T (1977) Mitocondri e cloroplasti: un problema evolutivo. In: Scienza e Technica. Mondadori, Milan, pp 305–318.

    Google Scholar 

  • Cavalier-Smith T (1980) Cell compartmentation and the origin of eukaryote membranous organelles. In: Schwemmler W, Schenk HEA (eds) Endocytobiology: endosymbiosis and cell biology, a synthesis of recent research. de Gruyter, Berlin, pp 893–916.

    Google Scholar 

  • Cavalier-Smith T (1981) The origin and early evolution of the eukaryotic cell. In: Carlile MJ, Collins JF, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution. Cambridge University Press, Cambridge, pp 33–84.

    Google Scholar 

  • Cavalier-Smith T (1982) The origins of plastids. Biol J Linn Soc 17:289–306.

    Article  Google Scholar 

  • Cavalier-Smith T (1983a) Endosymbiotic origin of the mitochondrial envelope. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. de Gruyter, Berlin, pp 265–279.

    Google Scholar 

  • Cavalier-Smith T (1983b) A 6-kingdom classification and a unified phylogeny. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. de Gruyter, Berlin, pp 1027–1034.

    Google Scholar 

  • Cavalier-Smith T (1987a) The origin of cells: a symbiosis between genes, catalysts, and membranes. Cold Spring Harb Symp Quant Biol 52:805–824.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1987b) The origin of eukaryotic and archaebacterial cells. Ann N Y Acad Sci 503:17–54.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1987c) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann N Y Acad Sci 503:55–71.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1990) Symbiotic origin of peroxisomes. In: Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology IV. Institut National de la Recherche Agronomique, Paris, pp 515–521.

    Google Scholar 

  • Cavalier-Smith T (1991) The evolution of cells. In: Osawa S, Honjo T (eds) Evolution of life. Springer, Berlin Heidelberg New York, pp 271–304.

    Google Scholar 

  • Cavalier-Smith T (1993a) Evolution of the eukaryotic genome. In: Broda P, Oliver SG, Sims P (eds) The eukaryotic genome. Cambridge University Press, Cambridge, pp 333–385.

    Google Scholar 

  • Cavalier-Smith T (1993b) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57:953–994.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000a) Flagellate megaevolution: the basis for eukaryote diversification. In: Green JC, Leadbeater BSC (eds) The flagellates. Taylor and Francis, London, pp361–390.

    Google Scholar 

  • Cavalier-Smith T (2000b) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002a) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002b) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2003a) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358:109–134.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2003b) Protist phylogeny and the high-level classification of Protozoa. Eur JProtistol 39:338–348.

    Article  Google Scholar 

  • Cavalier-Smith T (2004a) Chromalveolate diversity and cell megaevolution: interplay of membranes, genomes and cytoskeleton. In: Hirt RP, Horner DS (eds) Organelles, genomes and eukaryote phylogeny. CRC, London, pp 75–108.

    Google Scholar 

  • Cavalier-Smith T (2004b) The membranome and membrane heredity in development and evolution. In: Hirt RP, Horner DS (eds) Organelles, genomes and eukaryote phylogeny. Taylor & Francis, London, pp 335–351.

    Google Scholar 

  • Cavalier-Smith T (2006a) Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 361:969–1006.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2006b) Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc R Soc Lond B Biol Sci 273:1943–1952.

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2006c) Rooting the tree of life by transition analyses. Biol Direct 1:19.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE (2003a) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154:341–358.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EE (2003b) Phylogeny of Choanozoa, Apusozoa, and other Protozoa and early eukaryote megaevolution. J Mol Evol 56:540–563.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE, Oates B (2004) Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Eur J Protistol 40:21–48.

    Article  Google Scholar 

  • Chew O, Lister R, Qbadou S, Heazlewood JL, Soll J, Schleiff E, Millar AH, Whelan J (2004) Aplant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett 557:109–114.

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9:265–268.

    Article  PubMed  CAS  Google Scholar 

  • De Beer G (1940) Embryos and ancestors. Clarendon, Oxford.

    Google Scholar 

  • de Grey A (2005) Forces maintaining organellar genomes: is any as strong as genetic code disparity or hydrophobicity? BioEssays 27:436–446.

    Article  PubMed  CAS  Google Scholar 

  • de Kroon AI, Koorengevel MC, Vromans TA, de Kruijff B (2003) Continuous equilibration of phosphatidylcholine and its precursors between endoplasmic reticulum and mitochondria in yeast. Mol Biol Cell 14:2142–2150.

    Article  PubMed  Google Scholar 

  • Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391.

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Foster P (2003) Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos Trans R Soc Lond B Biol Sci 358:191–201; discussion 201–202.

    Google Scholar 

  • Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W (2004) A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660.

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T, Bernard C (1993) A purple protist. Nature 362:300.

    Article  Google Scholar 

  • Finlay BJ, Esteban GF (2001) Exploring Leeuwenhoek's legacy: the abundance and diversity of protozoa. Int Microbiol 4:125–133.

    PubMed  CAS  Google Scholar 

  • Finlay BJ, Span ASW, Harman JMP (1983) Nitrate respiration in primitive eukaryotes. Nature 333–335.

    Google Scholar 

  • Fisher RA (1958) The genetical theory of natural selection. 2nd edn. Dover, New York.

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463.

    Article  PubMed  CAS  Google Scholar 

  • Frazier AE, Chacinska A, Truscott KN, Guiard B, Pfanner N, Rehling P (2003) Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol Cell Biol 23:7818–7828.

    Article  PubMed  CAS  Google Scholar 

  • Frazier AE, Dudek J, Guiard B, Voos W, Li Y, Lind M, Meisinger C, Geissler A, Sickmann A, Meyer HE, Bilanchone V, Cumsky MG, Truscott KN, Pfanner N, Rehling P (2004) Pam16 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 11:226–233.

    Article  PubMed  CAS  Google Scholar 

  • Gentle I, Gabriel K, Beech P, Waller R, Lithgow T (2005) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–25.

    Article  CAS  Google Scholar 

  • Golding GB, Gupta RS (1995) Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol 12:1–6.

    PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–524.

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1932) The causes of evolution. Longmans, Green, London.

    Google Scholar 

  • Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99:1420–1425.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T (2003) Plastid division: its origins and evolution. Int Rev Cytol 222:63–98.

    Article  PubMed  Google Scholar 

  • Iyer LM, Leipe D, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31.

    Article  PubMed  CAS  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69.

    Article  PubMed  CAS  Google Scholar 

  • John P, Whatley FR (1975) Paracoccus denitrificans and the evolutionary origin of mitochondria. Nature 254:495–498.

    Article  PubMed  CAS  Google Scholar 

  • John P, Whatley FR (1977) Paracoccus denitrificans Davis (Micrococcus denitrificans Beijerinck) as a mitochondrion. Adv Bot Res 4:51–115.

    Article  CAS  Google Scholar 

  • Kanaji S, Iwahashi J, Kida Y, Sakaguchi M, Mihara K (2000) Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J Cell Biol 151:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Karlstrom KE, Bowring SA, Dehler CM, Knoll AH, Porter SM, Des Marais DJ, Weil AB, Sharp ZD, Geissman JW, Elrick MB, Timmons JM, Crossey LJ, Davidek KL (2000) Chuar Group of the Grand Canyon: record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology 28:619–622.

    Article  PubMed  CAS  Google Scholar 

  • Kiefel BR, Gilson PR, Beech PL (2004) Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ. Protist 155:105–115.

    Article  PubMed  CAS  Google Scholar 

  • Kudryavtsev AA, Bernhardt D, Schlegel M, Chao EE, Cavalier-Smith T (2005) 18S ribosomal RNA gene sequences of Cochliopodium (Himatismenida) and the phylogeny of Amoebozoa. Protist 156:215–224.

    Article  PubMed  CAS  Google Scholar 

  • Leipe DD, Wolf M, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72.

    Article  PubMed  CAS  Google Scholar 

  • Lister R, Whelan J (2006) Mitochondrial protein import: convergent solutions for receptor structure. Curr Biol 16:R197–R199.

    Article  PubMed  CAS  Google Scholar 

  • Lucattini R, Likic VA, Lithgow T (2004) Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol 21:652–658.

    Article  PubMed  CAS  Google Scholar 

  • Macasev D, Whelan J, Newbigin E, Silva-Filho MC, Mulhern TD, Lithgow T (2004) Tom22´, an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Mol Biol Evol 21:1557–1564.

    Article  PubMed  CAS  Google Scholar 

  • Margeot A, Blugeon C, Sylvestre J, Vialette S, Jacq C, Corral-Debrinski M (2002) In Saccharomyces cerevisiae, ATP2 mRNA sorting to the vicinity of mitochondria is essential for respiratory function. EMBO J 21:6893–904.

    Article  PubMed  CAS  Google Scholar 

  • Margolin W (2005) Bacterial mitosis: actin in a new role at the origin. Curr Biol 15:R259–R261.

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven.

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. Freeman, San Francisco.

    Google Scholar 

  • Margulis L, Dolan MF, Guerrero R (2000) The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci USA 97:6954–6959.

    Article  PubMed  CAS  Google Scholar 

  • Margulis L, Sagan D (2002) Acquiring genomes. Basic Books, New York.

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–44.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 358:59–85.

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, Ralf SA (2003) Dynamin: the endosymbiosis ring of power. Proc Natl Acad Sci USA 100:3557–3559.

    Article  PubMed  CAS  Google Scholar 

  • Meier S, Neupert W, Herrmann JM (2005) Conserved N-terminal negative charges in the Tim17 subunit of the TIM23 translocase play a critical role in the import of preproteins into mitochondria. J Biol Chem 280:7777–7785.

    Article  PubMed  CAS  Google Scholar 

  • Miyagishima SY, Nozaki H, Nishida K, Matsuzaki M, Kuroiwa T (2004) Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. J Mol Evol 58:291–303.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Ni L, Weiner H (2004) A co-translational model to explain the invivo import of proteins into HeLa cell mitochondria. Biochem J 382:385–92.

    Article  PubMed  CAS  Google Scholar 

  • Mus MM, Moczydlowska M (2000) Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from the Visingsö Group, Sweden. Norsk Geol Tidsskr 80:213–228.

    Article  Google Scholar 

  • Nikolaev SI, Mitchell EA, Petrov NB, Berney C, Fahrni J, Pawlowski J (2005) The testate lobose amoebae (order Arcellinida Kent, 1880) finally find their home within Amoebozoa. Protist 156:191–202.

    Article  PubMed  Google Scholar 

  • Nowicki M, Muller F, Frentzen M (2005) Cardiolipin synthase of Arabidopsis thaliana. FEBS Lett 579:2161–2155.

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Nunnari J (2003) The division of endosymbiotic organelles. Science 302:1698–1704.

    Article  PubMed  CAS  Google Scholar 

  • Overmann J, Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177:201–208.

    Article  PubMed  CAS  Google Scholar 

  • Peretó J, López-García P, Moreira D (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 29:469–477.

    Article  PubMed  CAS  Google Scholar 

  • Perry AJ, Hulett JM, Likic VA, Lithgow T. Gooley PR (2006) Convergent evolution of receptors for protein import into mitochondria. Curr Biol 16:221–229.

    Article  PubMed  CAS  Google Scholar 

  • Porter SM, Knoll AH (2000) Testate amoebae of the Chuar Group, Grand Canyon. Paleobiology 27:345–370.

    Google Scholar 

  • Porter SM, Meisterfeld R, Knoll AH (2003) Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J Paleont 77:409–429.

    Article  Google Scholar 

  • Preuss M, Ott M, Funes S, Luirink J, Herrmann JM (2005) Evolution of mitochondrial Oxa proteins from bacterial YidC: inherited and acquired functions of a conserved protein. JBiol Chem 280:13004–13011.

    Article  CAS  Google Scholar 

  • Rehling P, Model K, Brandner K, Kovermann P, Sickmann A, Meyer HE, Kuhlbrandt W, Wagner R, Truscott KN, Pfanner N (2003) Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299:1747–1751.

    Article  PubMed  CAS  Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274.

    Article  CAS  Google Scholar 

  • Schnepf E (1964) Zur Feinstruktur von Geosiphon pyriforme: ein Versuch zur Deutung cytoplasmatischer Membranen und Kompartimente. Archiv Microbiol 49:112–131.

    Google Scholar 

  • Searcy D (1992) Origins of mitochondria and chloroplasts from sulfur based symbioses. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific, Singapore, pp 47–78.

    Google Scholar 

  • Stechmann A, Cavalier Smith T (2003) The root of the eukaryote tree pinpointed. Curr Biol 13:R665–R666.

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre J, Vialette S, Corral Debrinski M, Jacq C (2003) Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria. Genome Biol 4:R44.

    Article  PubMed  Google Scholar 

  • Tjalsma H, Bron S, van Dijl JM (2003) Complementary impact of paralogous Oxa1-like proteins of Bacillus subtilis on post-translocational stages in protein secretion. J Biol Chem 278:15622–15632.

    Article  PubMed  CAS  Google Scholar 

  • Uzzell T, Spolsky C (1974) Mitochondria and plastids as endosymbionts: a revival of special creation? Am Sci 62:334–343.

    PubMed  CAS  Google Scholar 

  • van Roermund CW, Drissen R, van Den Berg M, Ijlst L, Hettema EH, Tabak HF, Waterham HR, Wanders RJ (2001) Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae. Mol Cell Biol 21:4321–4329.

    Article  PubMed  CAS  Google Scholar 

  • Van Valen LM, Maiorana VC (1980) The archaebacteria and eukaryotic origins. Nature 287:248–250.

    Article  PubMed  Google Scholar 

  • Whatley JM, John P, Whatley FR (1979) From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc R Soc Lond B Biol Sci 204:165–187.

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann N, Frazier AE, Pfanner N (2004) The protein import machinery of mitochondria. J.Biol Chem 279:14473–14476.

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1977) Endosymbionts and mitochondrial origin. J Mol Evol 10:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) The concept of cellular evolution. J Mol Evol 10:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Wojtkowska M, Szczech N, Stobienia O, Jarmuszkiewicz W, Budzinska M, Kmita H (2005) An inception report on the TOM complex of the amoeba Acanthamoeba castellanii, a simple model protozoan in mitochondria studies. J Bioenerg Biomembr 37:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Wolf YI, Aravind L, Koonin EV (1999) Rickettsiae and Chlamydiae: evidence of horizontal gene transfer and gene exchange. Trends Genet 15:173–175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cavalier-Smith, T. (2007). The Chimaeric Origin of Mitochondria: Photosynthetic Cell Enslavement, Gene-Transfer Pressure, and Compartmentation Efficiency. In: Martin, W.F., Müller, M. (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38502-8_8

Download citation

Publish with us

Policies and ethics