Skip to main content

Common Bean and Cowpea

  • Chapter
Transgenic Crops IV

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 59))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akella V, Lurquin PF (1993) Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep 12:110–117

    Article  CAS  Google Scholar 

  • Anand RP, Ganapathi A, Anbazhagan VR, Vengadesan G, Selvaraj N (2000) High frequency plant regeneratton via somatic embryogenesis in cell suspension cultures of cowpea, Vigna unguiculata (L.)Walp. In Vitro Cell Dev Biol Plant 36:475–480

    Article  CAS  Google Scholar 

  • Anand RP, Ganapathi A, Vengadesan G, Selvaraj N, Anbazhagan VR, Kulothungan S (2001) Plant regeneration from immature cotyledon-derived callus of Vigna unguiculata (L.) Walp (cowpea). Curr Sci 80:671–674

    CAS  Google Scholar 

  • Aragão FJL, Rech EL (1997) Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of a carioca cultivar. Int J Plant Sci 158:157–163

    Article  Google Scholar 

  • Aragão FJL, Rech EL (2001) Transgenic common bean (Phaseolus vulgaris). In: Bajaj YPS (ed) Transgenic Crops II. (Biotechnology in agriculture and forestry, vol 47) Springer, Berlin Heidelberg New York, pp 269–283

    Google Scholar 

  • Aragão FJL, Sá MFG, Almeida ER, Gander ES, Rech EL (1992) Particle bombardment-mediated transient expression of a Brazil nut methionine-rich albumin in bean (Phaseolus vulgaris L.). Plant Mol Biol 20:357–359

    Article  PubMed  Google Scholar 

  • Aragão FJL, Grossi-de-Sá MF, Davey MR, Brasileiro ACM, Faria JC, Rech EL (1993) Factors influencing transient gene expression in bean (Phaseolus vulgaris) using an electrical particle acceleration device. Plant Cell Rep 12:483–490

    Article  Google Scholar 

  • Aragão FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

    Article  Google Scholar 

  • Aragão FJL, Ribeiro SG, Barros LMG, Brasileiro ACM, Maxwell DP, Rech EL, Faria JC (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breed 4:491–499

    Article  Google Scholar 

  • Aragão FJL, Barros LMG, Sousa MV, Grossi de Sá MF, Almeida ERP, Gander ES, Rech EL (1999) Expression of a methionine-rich storage albumin from Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Gen Mol Biol 22:445–449

    Google Scholar 

  • Aragão FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor Appl Genet 101:1–6

    Article  Google Scholar 

  • Aragão FJL, Vianna GR, Albino MMC, Rech EL (2002) Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci 42:1298–1302

    Article  Google Scholar 

  • Becker J, Vogel T, Iqbal J, Nagl W (1994) Agrobacterium mediated transformation of Phaseolus vulgaris. Adaptation of some conditions. Annu Rep Bean Improv Coop USA 37:127–128

    Google Scholar 

  • Brar MS, AlKhayri JM, Shamblin CE, Mcnew RW, Morelock TE, Anderson EJ (1997) In vitro shoot tip multiplication of cowpea Vigna unguiculata (L) Walp. In Vitro Cell Dev Biol Plant 33:114–118

    Article  CAS  Google Scholar 

  • Brar MS, Al Khayri JM, Morelock TE, Anderson EJ (1999a) Genotypic response of cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants. In Vitro Cell Dev Biol Plant 35:8–12

    Article  CAS  Google Scholar 

  • Brar MS, Moore MJ, Al Khayri JM, Morelock TE, Anderson EJ (1999b) Ethylene inhibitors promote in vitro regeneration of cowpea (Vigna unguiculata L.). In Vitro Cell Dev Biol Plant 35:222–225

    CAS  Google Scholar 

  • Brasileiro ACM, Aragão FJL, Rossi S, Dusi DMA, Barros LMG, Rech EL (1996) Susceptibility of common and tepari bean to Agrobacterium spp strains and improvement of Agrobacterium-mediated transformation using microprojectile bombardment. J AmSoc Hortic Sci 121:810–815

    Google Scholar 

  • Bustos M (1991) Transgenic gene expression in Phaseolus vulgaris by direct gene transfer to protoplasts. Plant Mol Biol Rep 9:322–332

    CAS  Google Scholar 

  • Chandra A, Pental D (2003) Regeneration and genetic transformation of grain legumes: An overview. Curr Sci 84:381–387

    Google Scholar 

  • Choi PS, Cho DY, Soh WY (2003) Plant regeneration from immature embryo cultures of Vigna unguiculata. Biol Plant 47:305–308

    Article  Google Scholar 

  • Christou P (1994) The biotechnology of crop legumes. Euphytica 74:165–185

    Article  Google Scholar 

  • Christou P (1997) Biotechnology applied to grain legumes. Field Crops Res 53:83–97

    Article  Google Scholar 

  • Crepy L, Barros LMG, Valente VRN (1986) Callus production from leaf protoplasts of various cultivars of bean (Phaseolus vulgaris L.). Plant Cell Rep 5:124–126

    Article  CAS  Google Scholar 

  • Cruz de Carvalho MH, Van Le B, Zuily-Fodil Y, Pham Thi AT, Tran Thanh Van K (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci 159:223–232

    Article  PubMed  CAS  Google Scholar 

  • Dillen W, Engler G, Van Montagu M, Angenon G (1995) Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Rep 15:119–124

    Article  CAS  Google Scholar 

  • Ehlers JD, Hall EA (1997) Cowpea (Vigna unguiculata (L.)Walp.) Field Crops Res 53:187–204

    Article  Google Scholar 

  • FAOSTAT (2006) FAO agriculture database. FAO, Rome, available at http://faostat.fao.org/faostat

    Google Scholar 

  • Faria JC, Albino MMC, Dias BBA, Cunha NB, Silva LM, Vianna GR, Aragão FJL (2006) Partial resistance to Bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene. Plant Sci (in press)

    Google Scholar 

  • Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (2002) Challenges and opportunities for enhancing sustainable cowpea production. IITA, Ibadan, 435 pp

    Google Scholar 

  • Franklin CI, Trieu TN, Gonzales RA, Dixon RA (1991) Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell Tissue Organ Cult 24:199–206

    Article  Google Scholar 

  • Franklin CI, Trieu TN, Cassidy BG, Dixon RA, Nelson RS (1993) Genetic transformation of green bean callus via Agrobacterium mediated DNA transfer. Plant Cell Rep 12:74–79

    Article  CAS  Google Scholar 

  • Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea (Vigna unguiculata) cells with an antibiotic-resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46

    Article  CAS  Google Scholar 

  • Garcia JA, Hille J, Vos P, Goldbach R (1987) Transformation of cowpea (Vigna unguiculata) with a full-length DNA copy of cowpea mosaic virus messenger RNA. Plant Sci 48:89–98

    Article  CAS  Google Scholar 

  • Genga A, Cerjotti A, Bollini R, Bernacchia G, Allavena A (1991) Transient gene expression in bean tissues by high velocity microprojectile bombardment. J Genet Breed 45:129–134

    Google Scholar 

  • Gill R, Eapen S, Rao PS (1987) Callus induction from protoplasts of Vigna unguiculata, Vigna sublobata and Vigna mungo. Theor Appl Genet 74:100–103

    Article  Google Scholar 

  • Giovinazzo G, Greco V, Bollini R (1993) Optimization of cell suspension culture, protoplast isolation, and transient transformation of Phaseolus vulgaris L. Annu Rep Bean Improv Coop USA 36:14

    Google Scholar 

  • Graham PH, Ranalli P (1997) Common bean (Phaseolus vulgaris L.). Field Crops Res 53:131–146

    Article  Google Scholar 

  • Hall AE, Cisse N, Thiaw S, Elawad HOA, Ehlers JD, Ismail AM, Fery RL, Roberts PA, Kitch LW, Murdock LL, Boukar O, Phillips RD, McWatters KH (2003) Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Res 82:103–134

    Article  Google Scholar 

  • Ikea J, Ingelbrecht I, Uwaifo A, Thotttappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L.Walp.) using particle gun method. Afr J Biotechnol 2:211–218

    CAS  Google Scholar 

  • Jha TB, Roy SC (1980) Rapid callus formation at low mannitol level from protoplasts of Vigna sinensis. Indian J Exp Biol 18:87–89

    CAS  Google Scholar 

  • Kartha KK, Pahl K, Leung NL, Mroginski LA (1981) Plant regeneration from meristems of grain legumes: soybean, cowpeas, peanut, chickpea and bean. Can J Bot 59:1671–1679

    CAS  Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Article  Google Scholar 

  • Kim JW, Minamikawa T (1996) Transformation and regeneration of French bean plants by the particle bombardment process. Plant Sci 117:131–138

    Article  CAS  Google Scholar 

  • Konowicz AK, Cheah KT, Narasinham LL, Murdock LL, Shade RE, Chrispeels M, Filipone E, Monti LM, Bressan RA, Kasegawa PM (1997) Developing a transformation system for cowpea (Vigna unguiculata L.Walp.). In: Singh BB (ed) Advances in cowpea research, Sayce, Ibadan, pp 361–371

    Google Scholar 

  • Kulothungan S, Ganapathi A, Shajahan A, Kathiravan K (1995) Somatic embryogenesis in cell suspension culture of cowpea (Vigna unguiculata (L)Walp). Israel J Plant Sci 43:385–390

    Google Scholar 

  • Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–148

    Article  CAS  Google Scholar 

  • Leon P, Planckaert F, Walbot V (1991) Transient gene expression in protoplasts of Phaseolus vulgaris isolated from a cell suspension culture. Plant Physiol 95:968–972

    Article  PubMed  CAS  Google Scholar 

  • Lewis ME, Bliss FA (1994) Tumor formation and β-glucuronidase expression in Phaseolus vulgaris inoculated with Agrobacterium tumefaciens. J Am Soc Hortic Sci 119:361–366

    CAS  Google Scholar 

  • Li XB, Xu ZH, Wei ZM (1995) Plant regeneration from protoplasts of immature Vigna sinensis cotyledons via somatic embryogenesis. Plant Cell Rep 15:282–286

    CAS  Google Scholar 

  • Lippincott JA, Lippincott BB, Khalifa MDE (1968) Evidence for a tumor-associated factor active in the promotion of crown-gall tumor growth on primary pinto bean leaves. Physiol Plant 21:731–737

    Article  Google Scholar 

  • Liu Z, Park B-J, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum in.ltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16:189–197

    Article  CAS  Google Scholar 

  • Malik KA, Saxena PK (1992) Regeneration in Phaseolus vulgaris L.: high-frequency induction of direct shoot formation in intact seedlings by N-benzylaminopurine and thidiazuron. Planta 186:384–389

    Article  CAS  Google Scholar 

  • Mariotti D, Fontana GS, Santini L (1989) Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L. J Genet Breed 43:77–82

    Google Scholar 

  • Martins IS, Sondahl MR (1984) Axillary bud development from nodal cultures of bean seedlings (Phaseolus vulgaris L.). Turrialba 34:157–161

    Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926

    Article  Google Scholar 

  • McClean P, Grafton KF (1989) Regeneration of dry bean (Phaseolus vulgaris) via organogenesis. Plant Sci 60:117–122

    Article  Google Scholar 

  • McClean P, Chee P, Held B, Simental J, Drong RF, Slightom J (1991) Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: transformation of cotyledonary and hypocotyl tissues. Plant Cell Tissue Organ Cult 24:131–138

    Article  Google Scholar 

  • Mohamed MF, Read PE, Coyne DP (1992) Plant regeneration from in vitro culture of embryonic axis explants in common and terapy beans. J Am Soc Hortic Sci 117:332–336

    Google Scholar 

  • Mohamed MF, Coyne DP, Read PE (1993) Shoot organogenesis in callus induced from pedicel explants of common bean (Phaseolus vulgaris L.). J Am Soc Hortic Sci 118:158–162

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthukumar B, Mariamma M, Gnanam A (1995) Regeneration of plants from primary leaves of cowpea. Plant Cell Tissue Organ Cult 42:153–155

    Article  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985

    Article  CAS  Google Scholar 

  • Nagl W, Ignacimuthu S, Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J Plant Physiol 150:625–644

    CAS  Google Scholar 

  • Pellegrineschi A (1997) In vitro plant regeneration via organogenesis of cowpea [Vigna unguiculata (L.)Walp.]. Plant Cell Rep 17:89–95

    Article  CAS  Google Scholar 

  • Pellegrineschi A, Fatokun CA, Thottappilly G, Adepoju AA (1997) Cowpea embryo rescue. 1. Influence of culture media composition on plant recovery from isolated immature embryos. Plant Cell Rep 17:133–138

    Article  CAS  Google Scholar 

  • Penza R, Lurquin PF, Filippone E (1991) Gene transfer by co-cultivation of mature embryos with Agrobacterium tumefaciens — application to cowpea (Vigna unguiculata Walp). J Plant Physiol 138:39–43

    CAS  Google Scholar 

  • Penza R, Akella V, Lurquin PF (1992) Transient expression and histological localization of a gus chimeric gene after direct transfer to mature cowpea embryos. Biotechniques 13:576–580

    PubMed  CAS  Google Scholar 

  • Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206

    Article  CAS  Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    Article  PubMed  CAS  Google Scholar 

  • Quédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillaspie AG, Roberts PA, Ismail AM, Bruening G Gepts P, Timko MP, Belzile FJ (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 45:175–188

    Article  Google Scholar 

  • Russel DR, Wallace KM, Bathe JH, Martinell BJ, McCabe DE (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep 12:165–169

    Article  Google Scholar 

  • Saini R, Jaiwal PK (2002) Age, position in mother seedlings, orientation, and polarity of the epicotyl segments of blackgram (Vigna mungo L. Hepper) determines its morphogenic response. Plant Sci 163:101–109

    Article  CAS  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Steinbiss HH, Li XH (1983) Investigations on leaf protoplast culture of Vigna sinensis. Kexue Tongbao 28:829–831

    Google Scholar 

  • Svetleva D, Velcheva M, Bhowmik G (2003) Biotechnology as a useful tool in common bean (Phaseolus vulgaris L.) improvement. Euphytica 131:189–200

    Article  CAS  Google Scholar 

  • Timko MP (2002) Molecular cloning in cowpea: perspectives on the status of genome characterization and gene isolation for crop improvement. In: Fatokun CA, Taravali SA, Singh BB, Tamó M (eds) Challenges and opportunities for enhancing sustainable cowpea production. IITA Press, Ibadan, pp 197–212

    Google Scholar 

  • Van Le B, Cruz de Carvalho MH, Zuily-Fodil Y, Thi ATP, Van KTT (2002) Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node thin cell layer explants. J Plant Physiol 159:1255–1258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aragão, F.J.L., Campos, F.A.P. (2007). Common Bean and Cowpea. In: Pua, EC., Davey, M.R. (eds) Transgenic Crops IV. Biotechnology in Agriculture and Forestry, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36752-9_14

Download citation

Publish with us

Policies and ethics