Skip to main content

Adaptive Access to a Proof Planner

  • Conference paper
Mathematical Knowledge Management (MKM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3119))

Included in the following conference series:

  • 424 Accesses

Abstract

Mathematical tools such as computer algebra systems and interactive and automated theorem provers are complex systems and can perform difficult computations. Typically, such tools are used by a (small) group of particularly trained and skilled users to assist in mathematical problem solving. They can also be used as back-engines for interactive exercises in learning environments. This, however, suggests the adaptation of the choice of functionalities of the tool to the learner. This paper addresses the adaptive usage of the proof planner Multi for the learning environment ActiveMath. The proof planner is a back-engine for interactive proof exercises. We identify different dimensions in which the usage of such a service system can be adapted and investigate the architecture realizing the adaptive access to Multi.

This publication is partly a result of work in the context of the LeActiveMath and iClass projects, funded under the 6th Framework Programm of the European Community – (Contract IST-2003-507826). The authors are solely responsible for its content. The European Community is not responsible for any use that might be made of information appearing therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspinall, D.: Proof general kit, white paper (2002), available from: http://www.proofgeneral.org/kit

  2. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  3. Kohlhase, M.: OMDOC: Towards an internet standard for the administration, distribution and teaching of mathematical knowledge. In: Campbell, J.A., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Meier, A., Melis, E., Pollet, M.: Adaptable mixed-initiative proof planning for educational interaction. Electronic Notes in Theoretical Computer Science (to appear, 2004)

    Google Scholar 

  5. Meier, A., Pollet, M., Sorge, V.: Comparing approaches to the exploration of the domain of residue classes. Journal of Symbolic Computation, Special Issue on the Integration of Automated Reasoning and Computer Algebra Systems 34(4), 287–306 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Melis, E., Buedenbender, J., Andres, E., Frischauf, A., Goguadse, G., Libbrecht, P., Pollet, M., Ullrich, C.: ACTIVEMATH: A generic and adaptive web-based learning environment. Artificial Intelligence and Education 12(4), 385–407 (2001)

    Google Scholar 

  7. Melis, E., Glasmacher, C., Ullrich, C., Gerjets, P.: Automated proof planning for instructional design. In: Annual Conference of the Cognitive Science Society, pp. 633–638 (2001)

    Google Scholar 

  8. Melis, E., Meier, A.: Proof planning with multiple strategies. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 644–659. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Melis, E., Siekmann, J.: Knowledge-based proof planning. Artificial Intelligence 115(1), 65–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Melis, E., Zimmer, J., Müller, T.: Extensions of constraint solving for proof planning. In: European Conference on Artificial Intelligence, pp. 229–233 (2000)

    Google Scholar 

  11. Polya, G.: How to Solve it. Princeton University Press, Princeton (1945)

    MATH  Google Scholar 

  12. Redfern, D.: The Maple Handbook: Maple V Release 5. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  13. Reiss, K., Hellmich, F., Thomas, J.: Individuelle und schulische Bedingungsfaktoren für Argumentationen und Beweise im Mathematikunterricht. In: Schulische und außerschulische Bedingungen mathematischer, naturwissenschaftlicher und überfachlicher Kompetenzen. Beiheft der Zeitschrift für Pädagogik, pp. 51–64. Beltz (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melis, E., Meier, A., Pollet, M. (2004). Adaptive Access to a Proof Planner. In: Asperti, A., Bancerek, G., Trybulec, A. (eds) Mathematical Knowledge Management. MKM 2004. Lecture Notes in Computer Science, vol 3119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27818-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27818-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23029-8

  • Online ISBN: 978-3-540-27818-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics