Skip to main content

Proof Planning with Multiple Strategies

  • Conference paper
  • First Online:
Computational Logic — CL 2000 (CL 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1861))

Included in the following conference series:

Abstract

Humans have different problem solving strategies at their disposal and they can flexibly employ several strategies when solving a complex problem, whereas previous theorem proving and planning systems typically employ a single strategy or a hard coded combination of a few strategies. We introduce multi-strategy proof planning that allows for combining a number of strategies and for switching flexibly between strategies in a proof planning process. Thereby proof planning becomes more robust since it does not necessarily fail if one problem solving mechanism fails. Rather it can reason about preference of strategies and about failures. Moreover, our strategies provide a means for structuring the vast amount of knowledge such that the planner can cope with the otherwise overwhelming knowledge in mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gandalf. In CASC-14 http://www.cs.jcu.edu.au/~tptp/casc-14/, 1997.

  2. R.G. Bartle and D.R. Sherbert. Introduction to Real Analysis. John Wiley & Sons, New York, 1982.

    MATH  Google Scholar 

  3. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber, M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. Schaarschmidt, J. Siekmann, and V. Sorge. OMEGA: Towards a mathematical assistant. In Proc. CADE-14, pages 252–255. Springer-Verlag, 1997.

    Google Scholar 

  4. C. Benzmüller, M. Jamnik, M. Kerber, and V. Sorge. Agent Based Mathematical Reasoning? In 7th CALCULEMUS Workshop, pages 21–32, 1999.

    Google Scholar 

  5. W.W. Bledsoe, R.S. Boyer, and W.H. Henneman. Computer proofs of limit theorems. Artificial Intelligence, 3(1):27–60, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Bundy. The use of explicit plans to guide inductive proofs. In Proc. of CADE-9, pages 111–120, 1988.

    Google Scholar 

  7. A. Bundy, A. Stevens, F. Van Harmelen, A. Ireland, and A. Smaill. A heuristic for guiding inductive proofs. Artificial Intelligence, 63:185–253, 1993.

    Article  Google Scholar 

  8. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof plans for induction. Journal of Automated Reasoning, 7:303–324, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Denzinger and M. Fuchs. Cooperation of heterogeneous provers. In Proc. of IJCAI, pages 10–15. Morgan Kaufmann, 1999.

    Google Scholar 

  10. B. Hayes-Roth. A blackboard architecture for control. Artificial Intelligence, pages 251–321, 1985.

    Google Scholar 

  11. A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of Automated Reasoning, 16(1–2):79–111, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  12. W.W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9, Argonne National Laboratory, 1990.

    Google Scholar 

  13. E. Melis. AI-techniques in proof planning. In Proc. of European Conference on Artificial Intelligence, pages 494–498. Kluwer, 1998.

    Google Scholar 

  14. E. Melis. Combining proof planning with constraint solving. In Proc. of Calculemus and Types’98, 1998.

    Google Scholar 

  15. E. Melis. The“limit” domain. In Proc. of the Fourth International Conference on Artificial Intelligence in Planning Systems (AIPS’98), pages 199–206, 1998.

    Google Scholar 

  16. E. Melis and A. Meier. Proof planning with multiple strategies. Seki report SR-99-06, Universität des Saarlandes, FB Informatik, 1999.

    Google Scholar 

  17. E. Melis and A. Meier. Proof planning with multiple strategies II. In FLoC’99 workshop on Strategies in Automated Deduction, pages 61–72, 1999.

    Google Scholar 

  18. E. Melis and J.H. Siekmann. Knowledge-based proof planning. Artificial Intelligence, 1999.

    Google Scholar 

  19. E. Melis and C. Ullrich. Flexibly interleaving processes. In K.-D. Althoff and R. Bergmann, editors, International Conference on Case-Based Reasoning, volume 1650 of Lecture Notes in Artificial Intelligence, pages 263–275. Springer, 1999.

    Google Scholar 

  20. G. Polya. How to Solve it. Princeton University Press, Princeton, 1945.

    MATH  Google Scholar 

  21. A.H. Schoenfeld. Mathematical Problem Solving. Academic Press, New York, 1985.

    MATH  Google Scholar 

  22. D.S. Weld. An introduction to least committment planning. AI magazine, 15(4):27–61, 1994.

    Google Scholar 

  23. D.E. Wilkins and K.L. Myers. A multiagent planning architecture. In Proc. of the Fourth International Conference on AI Planning Systems (AIPS’98), pages 154–162, 1998.

    Google Scholar 

  24. A. Wolf. Strategy selection for automated theorem proving. In Proc. of AIMSA’ 98, pages 452–465, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melis, E., Meier, A. (2000). Proof Planning with Multiple Strategies. In: Lloyd, J., et al. Computational Logic — CL 2000. CL 2000. Lecture Notes in Computer Science(), vol 1861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44957-4_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-44957-4_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67797-0

  • Online ISBN: 978-3-540-44957-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics