Skip to main content

Subterranean Biodiversity Patterns from Global to Regional Scales

  • Chapter
  • First Online:
Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

In the last two decades, there has been a substantial progress in the availability of records for several subterranean taxa, as well as in mapping and statistical modeling of biodiversity patterns. Currently, there is still a large bias toward analyses of aquatic compared to terrestrial subterranean taxa. We provide the first global map of species richness for groundwater crustaceans, indicating that tropics are not hotspots of species richness. Detailed analyses of subterranean biodiversity patterns in Europe show that species richness peaks in regions of mid-latitude, where the beneficial effects of a high productive energy and high habitat heterogeneity have not been counteracted by cold or arid historical events. The range size of European groundwater crustacean species increases northward, a pattern which is best explained by long-term climatic changes. Subterranean species have narrow distribution ranges, which results in a high spatial turnover in species composition across regions and a disproportionally high contribution of regional diversity to total species richness. Within regions, biodiversity patterns are diverse, and their explanations vary across regions, but hotspots contribute only a small proportion of the regional species pool. Molecular approaches to biodiversity studies offer promising research avenues for further documenting and understanding subterranean biodiversity patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232

    Article  Google Scholar 

  • Beck J, Schwanghart W (2010) Comparing measure of species diversity from incomplete inventories: and update. Methods Ecol Evol 1:38–44

    Article  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • BioFresh Data Portal (2014) Freshwater biodiversity data portal. BioFresh Project – Biodiversity of Freshwater Ecosystems Funded by the European Union under the 7th Framework Programme (data-freshwaterbiodiversity.eu)

    Google Scholar 

  • Bohmann K, Evans A, Gilbert MT et al (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367

    Article  PubMed  Google Scholar 

  • Bonn A, Storch D, Gaston KJ (2004) Structure of the species–energy relationship. Proc R Soc B-Biol Sci 271:1685–1691

    Article  Google Scholar 

  • Botosaneanu L (1986) Stygofauna Mundi, A faunistic, distributional, and ecological synthesis of the world fauna inhabiting subterranean waters. E.J. Brill, Leiden

    Google Scholar 

  • Boutin C, Coineau N (2000) Evolutionary rates and phylogenetic age of some stygobiontic species. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean ecosystems – ecosystems of the World 30. Elsevier, Amsterdam, pp 433–451

    Google Scholar 

  • Brancelj A, Boonyanusith C, Watiroyram S et al (2013) The groundwater-dwelling fauna of South East Asia. J Limnol 72:327–344

    Article  Google Scholar 

  • Bregović P, Zagmajster M (2016) Understanding hotspots within a global hotspot – identifying the drivers of regional species richness patterns in terrestrial subterranean habitats. Insect Conserv Div 9:268–281

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton ME (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28:281–298

    Article  Google Scholar 

  • Camacho AI, Dorda BA, Rey I (2014) Iberian Peninsula and Balearic island Bathynellacea (Crustacea, Syncarida) database. ZooKeys 386:1–20

    Article  Google Scholar 

  • Castellarini F, Malard F, Dole-Olivier M-J et al (2007) Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Div Distrib 13:213–224

    Article  Google Scholar 

  • Christman MC, Culver DC (2001) The relationship between cave biodiversity and available habitat. J Biogeogr 28:367–380

    Article  Google Scholar 

  • Christman MC, Zagmajster M (2012) Mapping subterranean biodiversity. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 474–481

    Chapter  Google Scholar 

  • Christman MC, Culver DC, Madden MK et al (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1441–1452

    Article  Google Scholar 

  • Christman MC, Doctor DH, Niemiller ML et al (2016) Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment. PLoS One 11:e0160408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • CKmap2000 (2003) Checklist e distribuzione della fauna italiana. www.faunaitalia.it/ckmap

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B 345:101–118

    Article  CAS  Google Scholar 

  • Cornu J-F, Eme D, Malard F (2013) The distribution of groundwater habitats in Europe. Hydrgeol J 21:949–960

    Article  Google Scholar 

  • Cressie NAC (1993) Statistic for spatial data, revised edn. Wiley, New York

    Google Scholar 

  • Crist TO, Veech JA, Gering JC et al (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of a, b, and c diversity. Am Nat 162:734–743

    Article  PubMed  Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  • Culver DC, Pipan T (2013) Subterranean ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 7, 2nd edn. Academic, Waltham, pp 49–62

    Chapter  Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17

    Google Scholar 

  • Culver DC, Hobbs HH III, Christman MC et al (1999) Distribution map of caves and cave animals of the United States. J Cave Karst Stud 61:139–140

    Google Scholar 

  • Culver DC, Master LL, Christman MC et al (2000) Obligate cave fauna of the 48 contiguous United States. Conserv Biol 14:386–401

    Article  Google Scholar 

  • Culver DC, Deharveng L, Gibert J et al (2001) Mapping subterranean biodiversity. In: Proceedings of the international workshop held March 18–20, 2001, Laboratoire Souterrain du CNRS, Moulis, Ariege, France. Karst Waters Institute, Special Publication 6

    Google Scholar 

  • Culver DC, Christman MC, Elliott WR et al (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468

    Article  Google Scholar 

  • Culver DC, Christman MC, Sket B et al (2004a) Sampling adequacy in an extreme environment: species richness patterns in Slovenian caves. Biodivers Conserv 13:1209–1229

    Article  Google Scholar 

  • Culver DC, Christman MC, Šereg I et al (2004b) The location of terrestrial species-rich caves in a cave-rich area. Subterr Biol 2:27–32

    Google Scholar 

  • Culver DC, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128

    Article  Google Scholar 

  • Culver DC, Trontelj P, Zagmajster M et al (2012) Paving the way for standardized and comparable subterranean biodiversity studies. Subterr Biol 10:43–50

    Article  Google Scholar 

  • Datry T, Malard F, Gibert J (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J North Am Benth Soc 24:461–477

    Article  Google Scholar 

  • Davies RG, Orme CDL, Webster AJ et al (2007) Environmental predictors of global parrot (Aves: Psittaciformes) species richness and phylogenetic diversity. Glob Ecol Biogeogr 16:220–233

    Article  Google Scholar 

  • de Jong Y, Verbeek M, Michelsen V et al (2014) Fauna Europaea – all European animal species on the web. Biodiv Data J 2:e4034

    Article  Google Scholar 

  • Deharveng L, Bedos A (2012) Diversity patterns in the tropics. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic, Amsterdam, pp 238–250

    Chapter  Google Scholar 

  • Deharveng L, Stoch F, Gibert J et al (2009) Groundwater biodiversity in Europe. Freshw Biol 54:709–726

    Article  Google Scholar 

  • Delić T, Trontelj P, Rendoš M et al (2017) The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci Rep-UK 7:339

    Article  CAS  Google Scholar 

  • Dole-Olivier M-J, Castellarini F, Coineau N et al (2009) Towards an optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions. Freshw Biol 54:777–796

    Article  Google Scholar 

  • Dole-Olivier M-J, Galassi DMP, Fiers F et al (2015) Biodiversity in mountain groundwater: the Mercantour National Park (France) as a European hotspot. Zoosyst 37:529–550

    Article  Google Scholar 

  • Du Preez G, Majdi N, Swart A et al (2017) Nematodes in caves: a historical perspective on their occurrence, distribution and ecological relevance. Nematol 19:627–644

    Article  Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115–9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eme D, Malard F, Konecny-Dupré L et al (2013) Bayesian phylogeographic inferences reveal contrasting colonization dynamics among European groundwater isopods. Mol Ecol 22:5685–5699

    Article  CAS  PubMed  Google Scholar 

  • Eme D, Malard F, Colson-Proch C et al (2014) Integrating phylogeography, physiology and habitat modelling to explore species range determinants. J Biogeogr 41:687–699

    Article  Google Scholar 

  • Eme D, Zagmajster M, Fišer C et al (2015) Multi-causality and spatial non-stationarity in the determinants of groundwater crustacean diversity in Europe. Ecography 38:531–540

    Article  Google Scholar 

  • Eme D, Zagmajster M, Delić T et al (2017) Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 40:1–13

    Article  Google Scholar 

  • Evans KL, Warren PH, Gaston KJ (2005) Species – energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev Camb Philos 80:1–25

    Article  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F et al (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Field R, Hawkins BA, Cornell HV et al (2009) Spatial species-richness gradients across scales: a meta- analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Fišer C, Zagmajster M (2009) Cryptic species from cryptic space: the case of Niphargus fongi sp.n. (Amphipoda, Niphargidae). Crustaceana 82:593–614

    Article  Google Scholar 

  • Fišer C, Sket B, Trontelj P (2008) A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda). Zool Script 37:665–680

    Article  Google Scholar 

  • Foulquier A, Malard F, Lefebure T et al (2008) The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargidae). J Biogeogr 35:552–564

    Article  Google Scholar 

  • Foulquier A, Malard F, Mermillod-Blondin F et al (2011) Surface water linkages regulate trophic interactions in a groundwater food web. Ecosystems 14:1339–1353

    Article  CAS  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional diversity. Bioscience 52:473–481

    Article  Google Scholar 

  • Gibert J, Brancelj A, Camacho A et al (2004) Protocols for the assessment and conservation of aquatic life in the subsurface (PASCALIS): overview and main results. SWSB

    Google Scholar 

  • Gibert J, Culver DC, Dole-Olivier MJ et al (2009) Assessing and conserving groundwater biodiversity: synthesis and perspectives. Freshw Biol 54:930–941

    Article  Google Scholar 

  • Giribet G, McIntyre E, Christian E et al (2014) The first phylogenetic analysis of Palpigradi (Arachnida) – the most enigmatic arthropod order. Invertebr Syst 28:350–360

    Article  Google Scholar 

  • Gorički Š, Stanković D, Snoj A et al (2017) Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus. Sci Rep-UK 7:45054

    Article  CAS  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gouveia SF, Hortal J, Cassemiro FAS et al (2013) Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography 36:104–113

    Article  Google Scholar 

  • Guzik MT, Austin AD, Cooper SJB et al (2011) Is the Australian subterranean fauna uniquely diverse? Invertebr Syst 24:407–418

    Article  Google Scholar 

  • Halse SA, Scanlon MD, Cocking JS et al (2014) Pilbara stygofauna, deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Rec West Aust Mus 78:443–483

    Article  Google Scholar 

  • Hof C, Brändle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Glob Ecol Biogeogr 17:539–546

    Article  Google Scholar 

  • Holsinger JR (1993) Biodiversity of subterranean amphipod crustaceans: global patterns and zoogeographic implications. J Nat Hist 27:821–835

    Article  Google Scholar 

  • Horton T, Lowry J, De Broyer C et al (2017) World amphipoda database. Accessed at http://www.marinespecies.org/amphipoda

  • Humphreys WF, Watts CHS, Cooper SJB et al (2009) Grounwater estuaries of salt lakes: buried pools of endemic biodiversity on the wetsern plateau, Australia. Hydrobiologia 626:79–95

    Article  CAS  Google Scholar 

  • Illies J (1978) Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Valverde A, Sendra A, Garay P et al (2017) Energy and speleogenesis: key determinants of terrestrial species richness in caves. Ecol Evol 7:10207–10215

    Article  PubMed  PubMed Central  Google Scholar 

  • Juberthie C, Decu V (1994) Encyclopædia Biospeologica, Tome I. Société de Biospéologie, Moulis (France), Bucarest (Romania)

    Google Scholar 

  • Juberthie C, Decu V (1998) Encyclopædia Biospeologica, Tome II. Société de Biospéologie, Moulis (France), Bucarest (Romania)

    Google Scholar 

  • Juberthie C, Decu V (2001) Encyclopædia Biospeologica, Tome III. Société de Biospéologie, Moulis (France), Bucarest (Romania)

    Google Scholar 

  • Kayo RT, Marmonier P, Togouet SHZ et al (2012) An annotated checklist of freshwater stygobiotic crustaceans of Africa and Madagascar. Crustaceana 85:1613–1631

    Article  Google Scholar 

  • Lamoreux J (2004) Stygobites are more wide-ranging than troglobites. J Cave Karst Stud 66:18–19

    Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Lefébure T, Douady CJ, Gouy M et al (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol 15:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Leprieur F, Tedesco PA, Huqueny B et al (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol Lett 14:325–334

    Article  PubMed  Google Scholar 

  • Leprieur F, Albouy C, de Bortoli J et al (2012) Quantifying phylogenetic beta diversity: distinguishing between “true” turnover of lineages and phylogenetic diversity gradients. PLoS One 7:e42760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malard F, Boutin C, Camacho AI et al (2009) Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshw Biol 54:756–776

    Article  Google Scholar 

  • Mammola S, Leroy B (2017) Applying species distribution models to caves and other subterranean habitats. Ecography 40:1–14

    Article  Google Scholar 

  • Mejia-Ortiz LM, Lopez-Mejia M, Sprouse P (2013) Distribucion de los crustaceos estigobiontes de Mexico. Mundos Subterráneos 24:20–32

    Google Scholar 

  • Meleg IN, Zakšek V, Fišer C et al (2013) Can environment predict cryptic diversity? The case of Niphargus inhabiting Western Carpathian groundwater. PLoS One 8:e76770

    Article  CAS  Google Scholar 

  • Michel G, Malard F, Deharveng L et al (2009) Reserve selection for conserving groundwater biodiversity. Freshw Biol 54:861–876

    Article  Google Scholar 

  • Niemiller ML, Zigler KS (2013) Patterns of cave biodiversity and endemism in the Appalachians and interior plateau of Tennessee, USA. PLoS One 8:e64177

    Article  PubMed  PubMed Central  Google Scholar 

  • Niemiller ML, Porter ML, Keany J et al (2017) Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae). Conserv Gen Resour 1–11

    Google Scholar 

  • Ohlemüller R, Anderson BJ, Araújo MB et al (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Peck SB (1994) Canada. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica, Tome I. Société de Biospéologie, Moulis (France), Bucarest (Romania), pp 381–388

    Google Scholar 

  • Pérez-González A, Yager J (2001) The Cuban troglobites. In: Culver DC, Deharveng L, Gibert J, Sasowsky ID (eds) Karst Water Institute Special Publication 6. Charles Town, pp 61–75

    Google Scholar 

  • Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Proudlove GS (2010) Biodiversity and distribution of the subterranean fishes of the world. In: Trajano E, Bichuette ME, Kapoor BG (eds) Biology of subterranean fishes. Science Publishers, Enfield, NH, pp 41–64

    Chapter  Google Scholar 

  • Rios-Escalante P, Parra-Coloma L, Peralta MA et al (2016) A checklist of subterranean water crustaceans from Chile (South America). Proc Biol Soc Wash 129:114–128

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, New York

    Book  Google Scholar 

  • Šebela S, Turk J (2011) Local characteristics of Postojna Cave climate, air temperature, and pressure monitoring. Theor Appl Climatol 105:371–386

    Article  Google Scholar 

  • Soberón J, Jimenez R, Golubov J et al (2007) Assessing completeness of biodiversity databases at different spatial scales. Ecography 30:152–160

    Article  Google Scholar 

  • Souza SM, Ferreira LR (2016) The first two hotpots of subterranean biodiversity of South America. Subterr Biol 19:1–21

    Article  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range – how so many species co-exist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Stoch F, Galassi DMP (2010) Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653:217–234

    Article  CAS  Google Scholar 

  • Strayer DL, May SE, Nielsen P et al (1997) Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch Hydrobiol 140:131–144

    Article  CAS  Google Scholar 

  • Tisseuil C, Cornu JF, Beauchard O et al (2013) Global diversity patterns and cross- taxa convergence in freshwater systems. J Anim Ecol 82:365–376

    Article  PubMed  Google Scholar 

  • Trajano E, Bichuette ME (2010) Diversity of Brazilian subterranean invertebrates, with a list of troglomorphic data. Subterr Biol 7:1–16

    Google Scholar 

  • Trajano E, Gallão JE, Bichuette ME (2016) Spots of high diversity of troglobites in Brazil: the challenge of measuring subterranean diversity. Biodivers Conserv 25:1805–1828

    Article  Google Scholar 

  • Trontelj P, Fišer C (2009) Cryptic species diversity should not be trivialised. Syst Biodiv 7:1–3

    Article  Google Scholar 

  • Trontelj P, Douady CJ, Fišer C et al (2009) A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshw Biol 54:727–744

    Article  CAS  Google Scholar 

  • Trontelj P, Blejec A, Fišer C (2012) Ecomorphological convergence of cave communities. Evolution 66:3852–3865

    Article  PubMed  Google Scholar 

  • Tucker CM, Cadotte MW, Carvalho SB et al (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715

    Article  PubMed  Google Scholar 

  • Tyre AJ, Tenhumberg B, Field SA et al (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol Appl 13:1790–1801

    Article  Google Scholar 

  • Veter NM, DeSantis LRG, Yann LT et al (2013) Is Rapoport’s rule a recent phenomenon? A deep time perspective on potential causal mechanisms. Biol Lett 9:20130398

    Article  PubMed  PubMed Central  Google Scholar 

  • Vodă R, Dapporto L, Dincă V et al (2015) Cryptic matters: overlooked species generate most butterfly beta-diversity. Ecography 38:405–409

    Article  Google Scholar 

  • Weary DJ, Doctor DH (2014) Karst in the United States: a digital map compilation and database. USGS Open File Report 2014–1156. Available: http://pubs.usgs.gov/of/2014/1156/

  • Wiens JJ (2011) The causes of species richness patterns across space, time, and clades and the role of “ecological limits”. Q Rev Biol 86:75–96

    Article  PubMed  Google Scholar 

  • Wilson ED (1988) Biodiversity. National Academy, Washington

    Google Scholar 

  • Wolf B (1934–1938) Animalium cavernarum catalogus. Junk, s’Gravenhage

    Google Scholar 

  • Zagmajster M, Culver DC, Sket B (2008) Species richness patterns of obligate subterranean beetles (Insecta: Coleoptera) in a global biodiversity hotspot-effect of scale and sampling intensity. Div Distrib 14:95–105

    Article  Google Scholar 

  • Zagmajster M, Culver DC, Christman MC et al (2010) Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers Conserv 19:3035–3048

    Article  Google Scholar 

  • Zagmajster M, Eme D, Fišer C et al (2014) Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Glob Ecol Biogeogr 23:1135–1145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Zagmajster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zagmajster, M., Malard, F., Eme, D., Culver, D.C. (2018). Subterranean Biodiversity Patterns from Global to Regional Scales. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_9

Download citation

Publish with us

Policies and ethics