Skip to main content

Advertisement

Log in

Stygobiotic crustacean species richness: a question of numbers, a matter of scale

  • SANTA ROSALIA 50 YEARS ON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Species richness in ground water is still largely underestimated, and this situation stems from two different impediments: the Linnaean (i.e. the taxonomic) and the Wallacean (i.e. the biogeographical) shortfalls. Within this fragmented frame of knowledge of subterranean biodiversity, this review was aimed at (i) assessing species richness in ground water at different spatial scales, and its contribution to overall freshwater species richness at the continental scale; (ii) analysing the contribution of historical and ecological determinants in shaping spatial patterns of stygobiotic species richness across multiple spatial scales; (iii) analysing the role of β-diversity in shaping patterns of species richness at each scale analysed. From data of the present study, a nested hierarchy of environmental factors appeared to determine stygobiotic species richness. At the broad European scale, historical factors were the major determinants in explaining species richness patterns in ground water. In particular, Quaternary glaciations have strongly affected stygobiotic species richness, leading to a marked latitudinal gradient across Europe, whereas little effects were observed in surface fresh water. Most surface-dwelling fauna is of recent origin, and colonized this realm by means of post-glacial dispersal. Historical factors seemed to have also operated at the smaller stygoregional and regional scales, where different karstic and porous aquifers showed different values of species richness. Species richness at the small, local scale was more difficult to be explained, because the analyses revealed that point-diversity in ground water was rather low, and at increasing values of regional species richness, reached a plateau. This observation supports the coarse-grained role of truncated food webs and oligotrophy, potentially reflected in competition for food resources among co-occurring species, in shaping groundwater species diversity at the local scale. Alpha-diversity resulted decoupled from γ-diversity, suggesting that β-diversity accounted for the highest values of total species richness at the spatial scales analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anselin, L., 2005. Exploring Spatial Data with GeoDaTM: A Workbook. Center for Spatially Integrated Social Science, Urbana: 226 pp.

  • Araújo, M. B., D. Nogués-Bravo, J. A. F. Diniz-Filho, A. M. Haywood, P. J. Valdes & C. Rahbek, 2008. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31: 8–15.

    Article  Google Scholar 

  • Balian, E. V., C. Lévêque, H. Segers & K. Martens, 2008. Freshwater Animal Diversity Assessment. Hydrobiologia, Vol. 595. Springer, Dordrecht, The Netherlands.

  • Botosaneanu, L., 1986. Stygofauna Mundi—A Faunistic, Distributional and Ecological Synthesis of the World Fauna Inhabiting Subterranean Waters (Including the Marine Interstitial). E. J. Brill, Leiden, The Netherlands.

    Google Scholar 

  • Botosaneanu, L. & J. R. Holsinger, 1991. Some aspects concerning colonization of the subterranean realm—especially of subterranean waters: a response to Rouch & Danielopol, 1987. Stygologia 6: 11–39.

    Google Scholar 

  • Boutin, C. & N. Coineau, 1990. ‘Regression Model’, ‘Modèle Biphase’ d’évolution et origine des micro-organismes stygobies interstitiels continentaux. Revue de Micropaléontologie 33: 303–322.

    Google Scholar 

  • Boxshall, G. A. & D. Defaye, 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595: 195–207.

    Article  Google Scholar 

  • Braconnot, P., B. Otto-Bliesner, S. Harrison, S. Joussaume, J.-Y. Peterschmitt, A. Abe-Ouchi, M. Crucifix, E. Driesschaert, Th. Fichefet, C. D. Hewitt, M. Kageyama, A. Kitoh, A. Laîné, M.-F. Loutre, O. Marti, U. Merkel, G. Ramstein, P. Valdes, S. L. Weber, Y. Yu & Y. Zhao, 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: experiments and large-scale features. Climate of the Past 3: 261–277.

    Article  Google Scholar 

  • Brancelj, A., 2002. Microdistribution and high diversity of Copepoda (Crustacea) in a small cave in central Slovenia. Hydrobiologia 477: 59–72.

    Article  Google Scholar 

  • Brancelj, A. & H. J. Dumont, 2007. A review of the diversity, adaptations and groundwater colonization pathways in Cladocera and Calanoida (Crustacea), two rare and contrasting groups of stygobionts. Archiv für Hydrobiologie 168: 3–17.

    Google Scholar 

  • Caley, M. J. & D. Schluter, 1997. The relationship between local and regional diversity. Ecology 78: 70–80.

    Article  Google Scholar 

  • Castellarini, F., M.-J. Dole-Olivier, F. Malard & J. Gibert, 2005. Improving the assessment of groundwater biodiversity by exploring environmental heterogeneity at a regional scale. In Gibert, J. (ed.), World Subterranean Biodiversity. Université Claude Bernard, Lyon, France: 83–88.

    Google Scholar 

  • Castellarini, F., F. Malard, M.-J. Dole-Olivier & J. Gibert, 2007. Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Diversity and Distributions 13: 213–224.

    Article  Google Scholar 

  • Coineau, N., 2000. Adaptations to interstitial groundwater life. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean Ecosystems of the World, Vol. 30. Elsevier, Amsterdam, The Netherlands: 189–211.

    Google Scholar 

  • Colwell, R. K., 2005. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples, Version 8.02. Available at http://purl.oclc.org/estimates.

  • Colwell, R. K., C. Rahbek & N. J. Gotelli, 2004. The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist 163: E1–E23.

    Article  PubMed  Google Scholar 

  • Cornell, H. V., 1993. Unsaturated patterns in species assemblages: the role of regional processes in setting local species richness. In Ricklefs, R. E. & D. Schluter (eds), Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press, Chicago: 243–252.

  • Cornwell, W. K., D. W. Schwilk & D. D. Ackerly, 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465–1471.

    Article  PubMed  Google Scholar 

  • Crisci, J. V., 2006. Making taxonomy visible. Systematic Botany 31: 439–440.

    Article  Google Scholar 

  • Crist, T. O., J. A. Veech, J. C. Gering & K. S. Summerville, 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist 162: 734–743.

    Article  PubMed  Google Scholar 

  • Culver, D. C., 2005. The struggle to measure subterranean biodiversity. In Gibert, J. (ed.), World Subterranean Biodiversity. Université Claude Bernard, Lyon, France: 27–28.

    Google Scholar 

  • Culver, D. C. & B. Sket, 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62: 11–17.

    Google Scholar 

  • Danielopol, D. L., 1992. New perspectives in ecological contribution of dissolved organic carbon to an upland research of groundwater organisms. In Stanford, J. A. & J. J. Simons (eds), Proceedings of the First International Conference on Groundwater Ecology. American Water Resources Association, Bethesda, MD: 15–20.

    Google Scholar 

  • Danielopol, D. L. & R. Rouch, 1991. L’adaptation des organismes au milieu aquatique souterrain. Réflexions sur l’apport des recherches écologiques récentes. Stygologia 6: 129–142.

    Google Scholar 

  • Danielopol, D. L., P. Pospisil & R. Rouch, 2000. Biodiversity in groundwater: a large-scale view. Trends in Ecology & Evolution 15: 223–224.

    Article  Google Scholar 

  • Deharveng, L., F. Stoch, J. Gibert, A. Bedos, D. Galassi, M. Zagmajster, A. Brancelj, A. Camacho, F. Fiers, P. Martin, N. Giani, G. Magniez & P. Marmonier, 2009. Groundwater biodiversity in Europe. Freshwater Biology 54: 709–726.

    Article  Google Scholar 

  • Dole-Olivier, M.-J., F. Castellarini, N. Coineau, D. M. P. Galassi, P. Martin, N. Mori, A. Valdecasas & J. Gibert, 2009a. Towards an optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions. Freshwater Biology 54: 777–796.

    Article  Google Scholar 

  • Dole-Olivier, M.-J., F. Malard, D. Martin, T. Lefébure & G. Gibert, 2009b. Relationships between environmental variables and groundwater biodiversity at the regional scale. Freshwater Biology 54: 797–813.

    Article  CAS  Google Scholar 

  • Engel, A. S., 2007. Observations on the biodiversity of sulfidic karstic habitats. Journal of Cave and Karst Studies 69: 187–206.

    CAS  Google Scholar 

  • Fauna Europaea Web Service, 2004. Fauna Europaea Version 1.1. Available online at http://www.faunaeur.org.

  • Ferreira, D., F. Malard, M.-J. Dole-Olivier & J. Gibert, 2005. Hierarchical patterns of obligate groundwater biodiversity in France. In Gibert, J. (ed.), World Subterranean Biodiversity. Université Claude Bernard, Lyon, France: 75–78.

    Google Scholar 

  • Ferreira, D., F. Malard, M.-J. Dole-Olivier & J. Gibert, 2007. Obligate groundwater fauna of France: diversity patterns and conservation implications. Biodiversity and Conservation 16: 567–596.

    Article  Google Scholar 

  • Forrò, L., N. M. Korovchinsky, A. A. Kotov & A. Petrusek, 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595: 187–194.

    Article  Google Scholar 

  • Galassi, D. M. P., 2001. Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453(454): 227–253.

    Article  Google Scholar 

  • Galassi, D. M. P., P. De Laurentiis & M.-J. Dole-Olivier, 1999. Nitocrellopsis rouchi sp. n., a new ameirid harpacticoid from phreatic waters of France (Copepoda: Harpacticoida: Ameiridae). Hydrobiologia 412: 177–189.

    Article  Google Scholar 

  • Galassi, D. M. P., R. Huys & J. W. Reid, 2009a. Diversity, ecology and evolution of groundwater copepods. Freshwater Biology 54: 691–708.

    Article  Google Scholar 

  • Galassi, D. M. P., F. Stoch, B. Fiasca, T. Di Lorenzo & E. Gattone, 2009b. Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshwater Biology 54: 830–847.

    Article  CAS  Google Scholar 

  • Gaston, K. J., 2000. Global patterns in biodiversity. Nature 405: 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Gibert, J. & D. C. Culver, 2009. Assessing and conserving groundwater biodiversity: an introduction. Freshwater Biology 54: 639–648.

    Article  Google Scholar 

  • Gibert, J. & L. Deharveng, 2002. Subterranean ecosystems: a truncated functional biodiversity. BioScience 52: 473–481.

    Article  Google Scholar 

  • Gibert, J., D. L. Danielopol & J. A. Stanford, 1994. Groundwater Ecology. Academic Press, San Diego.

    Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.

    Article  Google Scholar 

  • Gotelli, N. J. & G. R. Graves, 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Graham, C. H. & P. V. A. Fine, 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space and time. Ecology Letters 11: 1265–1277.

    Article  PubMed  Google Scholar 

  • Hahn, H. J., 2009. A proposal for an extended typology of groundwater habitats. Hydrogeology Journal 17: 77–81.

    CAS  Google Scholar 

  • Hardy, O. J. & B. Senterre, 2007. Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. Journal of Ecology 95: 493–506.

    Article  Google Scholar 

  • Heino, J., 2002. Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodiversity and Conservation 11: 137–147.

    Article  Google Scholar 

  • Hewitt, G. M., 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87–112.

    Article  Google Scholar 

  • Hillebrand, H., 2004. On the generality of the latitudinal diversity gradient. The American Naturalist 163: 192–211.

    Article  PubMed  Google Scholar 

  • Hof, C., M. Brändle & R. Brandl, 2008. Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Global Ecology and Biogeography 17: 539–546.

    Article  Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia, or, why are there so many kinds of animals? The American Naturalist 93: 145–159.

    Article  Google Scholar 

  • Illies, J., 1978. Limnofauna Europaea, 2nd ed. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Jaume, D., 2008. Global diversity of spelaeogriphaceans & thermosbaenaceans (Crustacea; Spelaeogriphacea & Thermosbaenacea) in freshwater. Hydrobiologia 595: 219–224.

    Article  Google Scholar 

  • Jost, L., 2007. Partitioning diversity into independent alpha and beta components. Ecology 88: 2427–2439.

    Article  PubMed  Google Scholar 

  • Lefébure, T., C. J. Douady, F. Malard & J. Gibert, 2007. Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Molecular Phylogenetics and Evolution 42: 676–686.

    Article  PubMed  Google Scholar 

  • Lehner, B. & P. Döll, 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296: 1–22.

    Article  Google Scholar 

  • Lomolino, M. V., B. R. Riddle & J. H. Brown, 2006. Biogeography. Sinauer Associates. Inc, Sunderland, MA.

    Google Scholar 

  • Losos, J. B., 2008. Phylogenetic niche conservation phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 995–1007.

    Article  PubMed  Google Scholar 

  • Malard, F., J.-L. Reygrobellet, J. Mathieu & M. Lafont, 1994. The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer. Archiv für Hydrobiologie 131: 93–110.

    Google Scholar 

  • Malard, F., C. Boutin, A. I. Camacho, D. Ferreira, G. Michel, B. Sket & F. Stoch, 2009. Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshwater Biology 54: 756–776.

    Article  Google Scholar 

  • Martens, K., I. Schön, C. Meisch & D. J. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.

    Article  Google Scholar 

  • Martin, P., C. De Broyer, F. Fiers, G. Michel, R. Sablon & K. Wouters, 2009. Biodiversity of Belgian groundwater fauna in relation to environmental conditions. Freshwater Biology 54: 814–829.

    Article  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Notenboom, J., 1991. Marine regressions and the evolution of groundwater dwelling amphipods (Crustacea). Journal of Biogeography 18: 437–454.

    Article  Google Scholar 

  • Paran, F., F. Malard, J. Mathieu, M. Lafont, D. M. P. Galassi & P. Marmonier, 2005. Distribution of groundwater invertebrates along an environmental gradient in a shallow water-table aquifer. In Gibert, J. (ed.), World Subterranean Biodiversity. Université Claude Bernard, Lyon, France: 99–106.

    Google Scholar 

  • Pipan, T. & D. C. Culver, 2005. Estimating biodiversity in the epikarstic zone of a West Virginia cave. Journal of Cave and Karst Studies 67: 103–109.

    Google Scholar 

  • Pipan, T., M. C. Christman & D. C. Culver, 2006. Dynamics of epikarst communities: microgeographic pattern and environmental determinants of epikarst copepods in Organ Cave, West Virginia. American Midland Naturalist 156: 75–87.

    Article  Google Scholar 

  • Rangel, T. F. L. V. B., J. A. F. Diniz-Filho & L. M. Bini, 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography 15: 321–327.

    Article  Google Scholar 

  • Rapoport, E. H., 1982. Areography. Geographical Strategies of Species. Pergamon Press, New York.

    Google Scholar 

  • Ricklefs, R. E., 2008. Disintegration of the ecological community. The American Naturalist 172: 742–750.

    Article  Google Scholar 

  • Rouch, R., 1988. Sur la répartition spatiale des Crustacés dans le sous-écoulement d’un ruisseau des Pyrénées. Annales de Limnologie 24: 213–234.

    Article  Google Scholar 

  • Rouch, R., 1991. Structure du peuplement des Harpacticides dans le milieu hyporhéique d’un ruisseau des Pyrénées. Annales de Limnologie 27: 227–241.

    Article  Google Scholar 

  • Rouch, R., 1992. Caractéristiques et conditions hydrodynamiques des écoulements dans les sédiments d’un ruisseau des Pyrénées. Implications écologiques. Stygologia 7: 13–25.

    Google Scholar 

  • Rouch, R., 1995. Peuplement des Crustacés dans la zone hyporhéique d’un ruisseau des Pyrénées. Annales de Limnologie 31: 9–28.

    Article  Google Scholar 

  • Rouch, R. & D. L. Danielopol, 1987. L’origine de la faune aquatique souterraine entre le paradigme du réfuge et la modèle de la colonization active. Stygologia 3: 345–372.

    Google Scholar 

  • Rouch, R. & D. L. Danielopol, 1997. Species richness of microcrustacea in subterranean freshwater habitats. Comparative analysis and approximate evaluation. Internationale Revue gesamten Hydrobiologie 82: 121–145.

    Article  Google Scholar 

  • Rouch, R. & F. Lescher-Moutoué, 1992. Structure du peuplement des Cyclopides (Crustacea: Copepoda) dans le milieu hyporhéique d’un ruisseau des Pyrénées. Stygologia 7: 197–211.

    Google Scholar 

  • Ruffo, S. & F. Stoch, 2006. Checklist and distribution of the Italian fauna. Memorie del Museo Civico di Storia Naturale di Verona, 2. Serie. Sezione Scienze della Vita 17: 1–303.

    Google Scholar 

  • Rundle, S., D. Bilton, D. M. P. Galassi & D. Shiozawa, 2002. The geographical ecology of freshwater meiofauna. In Rundle, S. D., A. L. Robertson & J. M. Schmid-Araya (eds), Freshwater Meiofauna: Biology, Ecology. Backhuys Publishers, Leiden, The Netherlands: 279–294.

    Google Scholar 

  • Schminke, H. K., 1981. Perspectives in the study of the zoogeography of interstitial Crustacea: Bathynellacea (Syncarida) and Parastenocarididae (Copepoda). International Journal of Spéléologie 11: 83–89.

    Google Scholar 

  • Shurin, J. B., J. E. Havel, M. A. Leibold & B. Pinel-Alloul, 2000. Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81: 3062–3073.

    Article  Google Scholar 

  • Shurin, J. B., K. Cottenie & H. Hillebrand, 2009. Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159: 151–159.

    Article  PubMed  Google Scholar 

  • Sket, B., 1999a. The nature of biodiversity in hypogean waters and how it is endangered. Biodiversity and Conservation 8: 1319–1338.

    Article  Google Scholar 

  • Sket, B., 1999b. High biodiversity in hypogean waters and its endangerment—the situation in Slovenia, the Dinaric Karst and Europe. Crustaceana 72: 767–780.

    Article  Google Scholar 

  • Stegen, J. C. & N. G. Swenson, 2009. Functional trait assembly through ecological and evolutionary time. Theoretical Ecology 2: 239–250.

    Article  Google Scholar 

  • Stoch, F., 1995. The ecological and historical determinants of Crustacean diversity in groundwaters, or: why are there so many species? Mémoires de Biospéléologie 22: 139–160.

    Google Scholar 

  • Stoch, F. (ed.), 2008. Fauna. In Subterranean Waters, Hidden Biodiversity. Italian Habitats, Italian Ministry of the Environment and Territorial Protection, Friuli Museum of Natural History 20: 41–77.

  • Stoch, F., M. Arteau, A. Brancelj, D. M. P. Galassi & F. Malard, 2009. Biodiversity indicators in European groundwaters: towards a predictive model of stygobiotic species richness. Freshwater Biology 54: 745–755.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.

  • Trontelj, P., C. J. Douady, C. Fišer, J. Gibert, Š. Gorički, T. Lefébure, B. Sket & V. Zakšek, 2009. A molecular test for cryptic diversity in ground water: how large are ranges of macro-stygobionts? Freshwater Biology 54: 727–744.

    Article  CAS  Google Scholar 

  • Ulrich, W., I. Hajdamowicz, M. Zaleswski, M. Stańska, W. Ciurzycki & P. Tykarski, 2009. Species assortment or habitat filtering: a case study of spider communities on lake islands. Ecological Research. doi:10.1007/s11284-009-0661-y.

  • UNEP/IETC, 2000. Lakes and Reservoirs: Similarities, Differences and Importance. http://www.unep.or.jp/ietc/Publications/Short_Series/LakeReservoirs-1/index.asp.

  • Väinölä, R., J. D. S. Witt, M. Grabowski, J. H. Bradbury, K. Jazdzewski & B. Sket, 2008. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595: 241–255.

    Article  Google Scholar 

  • Whittaker, R. J., K. J. Willis & R. Field, 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28: 453–470.

    Article  Google Scholar 

  • Whittaker, R. J., M. B. Araújo, P. Jepson, R. J. Ladle, J. E. M. Watson & K. J. Willis, 2005. Conservation biogeography: assessment and prospect. Diversity and Distributions 11: 3–23.

    Article  Google Scholar 

  • Wilkens, H., D. C. Culver & W. F. Humphreys, 2000. Subterranean Ecosystems. Ecosystems of the World, Vol. 30. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Willis, K. J. & R. J. Whittaker, 2002. Species diversity: scale matters. Science 295: 1245–1248.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, H. & C. Kampichler, 2000. Local and regional species richness in communities of surface dwelling grassland Collembola: indication of species saturation. Ecography 23: 385–392.

    Article  Google Scholar 

Download references

Acknowledgments

This contribution is partially granted by the Italian PRIN ‘Phylogenetic and biogeographical assessment of endemic patterns of distribution in the Apennine Province (Italy): new tools for biodiversity assessment and conservation strategies’ and by the European Community project PESI ‘A Pan-European Species directories Infrastructure’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Stoch.

Additional information

This paper is dedicated to the late Prof. Janine Gibert (University of Lyon, France), who along her life, with great passion, highly promoted research in groundwater ecosystems, representing a key-reference scientist worldwide.

Guest editors: L. Naselli-Flores & G. Rossetti / Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoch, F., Galassi, D.M.P. Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653, 217–234 (2010). https://doi.org/10.1007/s10750-010-0356-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0356-y

Keywords

Navigation