Skip to main content

Genetics of Hydrocephalus: Causal and Contributory Factors

  • Chapter
  • First Online:
Cerebrospinal Fluid Disorders

Abstract

Hydrocephalus, as a multifactorial condition, can be caused or influenced by genetic factors at many levels. The best known genetic causes are mutations in genes such as L1CAM that cause hydrocephalus primarily through CSF obstruction. In these conditions, hydrocephalus is often severe, prenatal in onset, and may be the predominant clinical feature. Hydrocephalus may also be a feature of many genetic syndromes, such as the congenital muscular dystrophies, the RASopathies, and craniosynostosis syndromes. These conditions are usually identified on the basis of clinical features other than hydrocephalus, although those features may be overshadowed when ventricular dilatation is severe. Finally, acquired or multifactorial forms of hydrocephalus could conceivably be influenced by susceptibility genes. In this chapter, we focus first on genetic causes of severe, early-onset forms of hydrocephalus. We next address syndromes in which hydrocephalus may be an accompanying – but not the primary – clinical feature. Finally, we touch upon the notion of genetic variants that are not pathogenic in themselves, but could increase the likelihood of developing hydrocephalus in the presence of other risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tully HM, Ishak GE, Rue TC, et al. Two hundred thirty-six children with developmental hydrocephalus: causes and clinical consequences. J Child Neurol. 2016;31:309–20.

    Article  PubMed  Google Scholar 

  2. Lategan B, Chodirker BN, Del Bigio MR. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol. 2010;20:391–8.

    Article  PubMed  Google Scholar 

  3. Rosenthal A, Jouet M, Kenwrick S. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet. 1992;2:107–12.

    Article  CAS  PubMed  Google Scholar 

  4. Schrander-Stumpel C, Vos YJ. L1 syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews. Seattle, WA: University of Washington; 1993.

    Google Scholar 

  5. Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci. 2007;10:19–26.

    Article  CAS  PubMed  Google Scholar 

  7. Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013;126:427–42.

    Article  CAS  PubMed  Google Scholar 

  8. Ekici AB, Hilfinger D, Jatzwauk M, et al. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol. 2010;1:99–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Drielsma A, Jalas C, Simonis N, et al. Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J Med Genet. 2012;49:708–12.

    Article  CAS  PubMed  Google Scholar 

  10. Ruggeri G, Timms AE, Cheng C, et al. Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A. 2018;176:676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ishida-Takagishi M, Enomoto A, Asai N, et al. The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nat Commun. 2012;3:859.

    Article  PubMed  CAS  Google Scholar 

  12. Tsoi H, Yu AC, Chen ZS, et al. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet. 2014;51:590–5.

    Article  CAS  PubMed  Google Scholar 

  13. Al-Dosari MS, Al-Owain M, Tulbah M, et al. Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet. 2013;50:54–8.

    Article  CAS  PubMed  Google Scholar 

  14. Saugier-Veber P, Marguet F, Lecoquierre F, et al. Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MPDZ gene. Acta Neuropathol Commun. 2017;5:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Feldner A, Adam MG, Tetzlaff F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaheen R, Sebai MA, Patel N, et al. The genetic landscape of familial congenital hydrocephalus. Ann Neurol. 2017;81:890–7.

    Article  CAS  PubMed  Google Scholar 

  17. Al-Jezawi NK, Al-Shamsi AM, Suleiman J, et al. Compound heterozygous variants in the multiple PDZ domain protein (MPDZ) cause a case of mild non-progressive communicating hydrocephalus. BMC Med Genet. 2018;19:34.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dobyns WB, Pagon RA, Armstrong D, et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet. 1989;32:195–210.

    Article  CAS  PubMed  Google Scholar 

  19. Miller G, Ladda RL, Towfighi J. Cerebro-ocular dysplasia--muscular dystrophy (Walker Warburg) syndrome. Findings in 20-week-old fetus. Acta Neuropathol. 1991;82:234–8.

    Article  CAS  PubMed  Google Scholar 

  20. Longman C, Mercuri E, Cowan F, et al. Antenatal and postnatal brain magnetic resonance imaging in muscle-eye-brain disease. Arch Neurol. 2004;61:1301–6.

    Article  PubMed  Google Scholar 

  21. Fried K. X-linked mental retardation and-or hydrocephalus. Clin Genet. 1972;3:258–63.

    Article  CAS  PubMed  Google Scholar 

  22. Strain L, Wright AF, Bonthron DT. Fried syndrome is a distinct X linked mental retardation syndrome mapping to Xp22. J Med Genet. 1997;34:535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saillour Y, Zanni G, Des Portes V, et al. Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. J Med Genet. 2007;44:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cacciagli P, Desvignes JP, Girard N, et al. AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur J Hum Genet. 2014;22:363–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gulsuner S, Tekinay AB, Doerschner K, et al. Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. Genome Res. 2011;21:1995–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cavallin M, Rujano MA, Bednarek N, et al. WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells. Brain. 2017;140:2597–609.

    Article  PubMed  Google Scholar 

  27. Kielar M, Tuy FP, Bizzotto S, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923–33.

    Article  CAS  PubMed  Google Scholar 

  28. Massimi L, Paternoster G, Fasano T, Di Rocco C. On the changing epidemiology of hydrocephalus. Childs Nerv Syst. 2009;25:795–800.

    Article  PubMed  Google Scholar 

  29. Moritake K, Nagai H, Miyazaki T, Nagasako N, Yamasaki M, Tamakoshi A. Nationwide survey of the etiology and associated conditions of prenatally and postnatally diagnosed congenital hydrocephalus in Japan. Neurol Med Chir (Tokyo). 2007;47:448–52; discussion 52.

    Article  Google Scholar 

  30. Westermaier T, Schweitzer T, Ernestus RI. Arachnoid cysts. Adv Exp Med Biol. 2012;724:37–50.

    Article  CAS  PubMed  Google Scholar 

  31. Doherty D, Chudley AE, Coghlan G, et al. GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am J Hum Genet. 2012;90:1088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morin X, Jaouen F, Durbec P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci. 2007;10:1440–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bisschoff IJ, Zeschnigk C, Horn D, et al. Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciodigital syndrome: a study of the extensive clinical variability. Hum Mutat. 2013;34:237–47.

    Article  CAS  PubMed  Google Scholar 

  34. Putoux A, Thomas S, Coene KL, et al. KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet. 2011;43:601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biesecker LG. Pallister-Hall syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, eds. GeneReviews. University of Washington, Seattle); 1993.

    Google Scholar 

  36. Biesecker LG. Greig cephalopolysyndactyly syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  37. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 2011;26:1039–56.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bristol RE, Lekovic GP, Rekate HL. The effects of craniosynostosis on the brain with respect to intracranial pressure. Semin Pediatr Neurol. 2004;11:262–7.

    Article  PubMed  Google Scholar 

  39. Rich PM, Cox TC, Hayward RD. The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR Am J Neuroradiol. 2003;24:45–51.

    PubMed  PubMed Central  Google Scholar 

  40. Hevner RF. The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol. 2005;110:208–21.

    Article  PubMed  Google Scholar 

  41. Thomson RE, Kind PC, Graham NA, et al. Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Dev. 2009;4:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Khonsari RH, Delezoide AL, Kang W, et al. Central nervous system malformations and deformations in FGFR2-related craniosynostosis. Am J Med Genet A. 2012;158A:2797–806.

    Article  PubMed  CAS  Google Scholar 

  43. Hill CA, Martinez-Abadias N, Motch SM, et al. Postnatal brain and skull growth in an Apert syndrome mouse model. Am J Med Genet A. 2013;161A:745–57.

    Article  PubMed  CAS  Google Scholar 

  44. Allanson JE, Roberts AE. Noonan syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  45. Gripp KW, Lin AE. Costello syndrome. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  46. Gripp KW, Hopkins E, Doyle D, Dobyns WB. High incidence of progressive postnatal cerebellar enlargement in Costello syndrome: brain overgrowth associated with HRAS mutations as the likely cause of structural brain and spinal cord abnormalities. Am J Med Genet A. 2010;152A:1161–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pascual-Castroviejo I, Pascual-Pascual SI, Velazquez-Fragua R, Viano J, Carceller-Benito F. Aqueductal stenosis in the neurofibromatosis type 1. Presentation of 19 infantile patients. Rev Neurol. 2007;45:18–21.

    CAS  PubMed  Google Scholar 

  48. Mirzaa GM, Conway RL, Gripp KW, et al. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A. 2012;158A:269–91.

    Article  PubMed  Google Scholar 

  49. Plawner LL, Delgado MR, Miller VS, et al. Neuroanatomy of holoprosencephaly as predictor of function: beyond the face predicting the brain. Neurology. 2002;59:1058–66.

    Article  CAS  PubMed  Google Scholar 

  50. Williams D, Patel C, Fallet-Bianco C, et al. Fowler syndrome-a clinical, radiological, and pathological study of 14 cases. Am J Med Genet A. 2010;152A:153–60.

    Article  PubMed  Google Scholar 

  51. Kato M, Das S, Petras K, et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat. 2004;23:147–59.

    Article  CAS  PubMed  Google Scholar 

  52. Briard ML, le Merrer M, Plauchu H, et al. Association of VACTERL and hydrocephalus: a new familial entity. Ann Genet. 1984;27:220–3.

    CAS  PubMed  Google Scholar 

  53. Porteous ME, Cross I, Burn J. VACTERL with hydrocephalus: one end of the Fanconi anemia spectrum of anomalies? Am J Med Genet. 1992;43:1032–4.

    Article  CAS  PubMed  Google Scholar 

  54. McCauley J, Masand N, McGowan R, et al. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am J Med Genet A. 2011;155A:2370–80.

    Article  PubMed  CAS  Google Scholar 

  55. Evans JA, Chodirker BN. Absence of excess chromosome breakage in a patient with VACTERL-hydrocephalus. Am J Med Genet. 1993;47:112–3.

    Article  CAS  PubMed  Google Scholar 

  56. Ishak GE, Dempsey JC, Shaw DW, et al. Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain J Neurol. 2012;135:1370–86.

    Article  Google Scholar 

  57. Tully HM, Dempsey JC, Ishak GE, et al. Beyond Gomez-Lopez-Hernandez syndrome: recurring phenotypic themes in rhombencephalosynapsis. Am J Med Genet A. 2012;158A:2393–406.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paciorkowski AR, Greenstein RM. When is enlargement of the subarachnoid spaces not benign? A genetic perspective. Pediatr Neurol. 2007;37:1–7.

    Article  PubMed  Google Scholar 

  59. Schoner K, Kohlhase J, Müller AM, et al. Hydrocephalus, agenesis of the corpus callosum, and cleft lip/palate represent frequent associations in fetuses with Peters’ plus syndrome and B3GALTL mutations. Fetal PPS phenotypes, expanded by Dandy Walker cyst and encephalocele. Prenat Diagn. 2013;33:75–80.

    Article  CAS  PubMed  Google Scholar 

  60. Wessels MW, den Hollander NS, Willems PJ. Mild fetal cerebral ventriculomegaly as a prenatal sonographic marker for Kartagener syndrome. Prenat Diagn. 2003;23:239–42.

    Article  PubMed  Google Scholar 

  61. Vieira JP, Lopes P, Silva R. Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol. 2012;27:938–41.

    Article  PubMed  Google Scholar 

  62. Hogge WA, Blank C, Roochvarg LB, Hogge JS, Wulfsberg EA, Raffel LJ. Gorlin syndrome (naevoid basal cell carcinoma syndrome): prenatal detection in a fetus with macrocephaly and ventriculomegaly. Prenat Diagn. 1994;14:725–7.

    Article  CAS  PubMed  Google Scholar 

  63. Mitchell EA, Cairns LM, Hodge JL. Rothmund-Thomson syndrome (poikiloderma congenitale) associated with hydrocephalus. Aust Paediatr J. 1980;16:290–1.

    CAS  PubMed  Google Scholar 

  64. Muller EA, Aradhya S, Atkin JF, et al. Microdeletion 9q22.3 syndrome includes metopic craniosynostosis, hydrocephalus, macrosomia, and developmental delay. Am J Med Genet A. 2012;158A:391–9.

    Article  PubMed  CAS  Google Scholar 

  65. Hwu WL, Kuo PL, Hung YT, Chien YH, Chu SY. Partial trisomy 1 with congenital hydrocephalus and hypogammaglobulinemia: report of one case. Acta paediatrica Taiwanica [Taiwan er ke yi xue hui za zhi]. 2004;45:97–9.

    Google Scholar 

  66. Eash D, Waggoner D, Chung J, Stevenson D, Martin CL. Calibration of 6q subtelomere deletions to define genotype/phenotype correlations. Clin Genet. 2005;67:396–403.

    Article  CAS  PubMed  Google Scholar 

  67. Bertini V, De Vito G, Costa R, Simi P, Valetto A. Isolated 6q terminal deletions: an emerging new syndrome. Am J Med Genet A. 2006;140:74–81.

    Article  PubMed  Google Scholar 

  68. Morava E, Bartsch O, Czako M, et al. Small inherited terminal duplication of 7q with hydrocephalus, cleft palate, joint contractures, and severe hypotonia. Clin Dysmorphol. 2003;12:123–7.

    Article  PubMed  Google Scholar 

  69. Schrander-Stumpel C, Fryns JP. Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr. 1998;157:355–62.

    Article  CAS  PubMed  Google Scholar 

  70. Jaraj D, Agerskov S, Rabiei K, et al. Vascular factors in suspected normal pressure hydrocephalus: a population-based study. Neurology. 2016;86:592–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hiraoka K, Narita W, Kikuchi H, et al. Amyloid deposits and response to shunt surgery in idiopathic normal-pressure hydrocephalus. J Neurol Sci. 2015;356:124–8.

    Article  CAS  PubMed  Google Scholar 

  72. Odagiri H, Baba T, Nishio Y, et al. Clinical characteristics of idiopathic normal pressure hydrocephalus with Lewy body diseases. J Neurol Sci. 2015;359:309–11.

    Article  PubMed  Google Scholar 

  73. Kato T, Sato H, Emi M, et al. Segmental copy number loss of SFMBT1 gene in elderly individuals with ventriculomegaly: a community-based study. Intern Med. 2011;50:297–303.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Bonasio R, Strino F, et al. SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes Dev. 2013;27:749–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang HC, Liang YJ, Chen JW, et al. Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as hypertension susceptibility genes in Han Chinese with a genome-wide gene-based association study. PLoS One. 2012;7:e32907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chung RH, Chiu YF, Hung YJ, et al. Genome-wide copy number variation analysis identified deletions in SFMBT1 associated with fasting plasma glucose in a Han Chinese population. BMC Genomics. 2017;18:591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kottgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45:145–54.

    Article  PubMed  CAS  Google Scholar 

  78. Gould DB, Phalan FC, Breedveld GJ, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308:1167–71.

    Article  CAS  PubMed  Google Scholar 

  79. McCarty JH, Lacy-Hulbert A, Charest A, et al. Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development. 2005;132:165–76.

    Article  CAS  PubMed  Google Scholar 

  80. Srivastava M, Atwater I, Glasman M, et al. Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(+/−) knockout mouse. Proc Natl Acad Sci U S A. 1999;96:13783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ryckman KK, Dagle JM, Kelsey K, Momany AM, Murray JC. Replication of genetic associations in the inflammation, complement, and coagulation pathways with intraventricular hemorrhage in LBW preterm neonates. Pediatr Res. 2011;70:90–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yung YC, Mutoh T, Lin ME, et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med. 2011;3:99ra87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Park R, Moon UY, Park JY, et al. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun. 2016;7:10329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Karimy JK, Zhang J, Kurland DB, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23:997–1003.

    CAS  PubMed  Google Scholar 

  85. Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev. 2012;92:1577–617.

    Article  CAS  PubMed  Google Scholar 

  86. Tully HM. Anatomical configurations associated with posthemorrhagic hydrocephalus among premature infants with intraventricular hemorrhage. Neurosurg Focus. 2016;41:E5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. McLone DG, Knepper PA. The cause of Chiari II malformation: a unified theory. Pediatr Neurosci. 1989;15:1–12.

    Article  CAS  PubMed  Google Scholar 

  88. Sweeney KJ, Caird J, Sattar MT, Allcutt D, Crimmins D. Spinal level of myelomeningocele lesion as a contributing factor in posterior fossa volume, intracranial cerebellar volume, and cerebellar ectopia. J Neurosurg Pediatr. 2013;11:154–9.

    Article  PubMed  Google Scholar 

  89. Seo JH, Zilber Y, Babayeva S, et al. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet. 2011;20:4324–33.

    Article  CAS  PubMed  Google Scholar 

  90. Bartsch O, Kirmes I, Thiede A, et al. Novel VANGL1 gene mutations in 144 Slovakian, Romanian and German patients with neural tube defects. Mol Syndromol. 2012;3:76–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Allache R, De Marco P, Merello E, Capra V, Kibar Z. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol. 2012;94:176–81.

    Article  CAS  PubMed  Google Scholar 

  92. Juriloff DM, Harris MJ. A consideration of the evidence that genetic defects in planar cell polarity contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol. 2012;94:824–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Tully .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tully, H., Laquerriere, A., Doherty, D., Dobyns, W. (2019). Genetics of Hydrocephalus: Causal and Contributory Factors. In: Limbrick Jr., D., Leonard, J. (eds) Cerebrospinal Fluid Disorders . Springer, Cham. https://doi.org/10.1007/978-3-319-97928-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97928-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97927-4

  • Online ISBN: 978-3-319-97928-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics