Skip to main content

Biodegradable Foams in the Development of Food Packaging

  • Chapter
  • First Online:
Polymers for Food Applications

Abstract

The use of biodegradable and renewable-source polymers as substitutes for petroleum-based plastic packaging has been increasingly discussed by the academic community over the last few decades, particularly application in food packaging. Between the conventional plastic materials that have been used for food packaging, expanded polystyrene (EPS) is not degradable and is difficult to recycle, creating environmental issues. The development of biodegradable materials is an alternative to replace EPS. This chapter discusses recent advances in the development of biodegradable foams for food packaging, the main processes employed to produce foams with different cellular structures and properties, such as extrusion and baking, polymers that have been used to produce these foams, and their resulting water sorption capacity, morphological, mechanical and barrier properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aichholzer W, Fritz HG (1998) Rheological characterization of thermoplastic starch materials. Starch/Stärke 50(2–3):77–83

    Article  CAS  Google Scholar 

  • Altieri PA, Tessler MM (1999) Water/humidity resistant starch foams. US Patent CA 2171774 C, 16 Nov 1999

    Google Scholar 

  • Avella M, Cocca M, Errico ME et al (2012) Polyvinyl alcohol biodegradable foams containing cellulose fibres. J Cell Plast 48:459–470

    Article  CAS  Google Scholar 

  • Bastioli C, Bellotti V, Del Giudice L et al (1994) Expanded articles of biodegradable plastic materials. US Patent 5,360,830, 1 Nov 1994

    Google Scholar 

  • Bastioli C, Bellotti V, Del Tredici G et al (1998) Biodegradable foamed articles and process for preparation thereof. US Patent 5,801,207, 1 Sept 1998

    Google Scholar 

  • BĂ©nĂ©zet JC, Stanojlovic-Davidovic A, Bergeret A et al (2012) Mechanical and physical properties of expanded starch, reinforced by natural fibres. Ind Crop Prod 37:435–440

    Article  CAS  Google Scholar 

  • Bhatnagar S, Hanna MA (1993) Physical, mechanical and thermal properties of starch based plastic foams. ASAE, St. Joseph

    Google Scholar 

  • Bhatnagar S, Hanna MA (1995) Properties of extruded starch based plastic foams. Ind Crop Prod 4:71–77

    Article  CAS  Google Scholar 

  • Bhatnagar S, Hanna MA (1996) Starch-based plastic foams from various starch sources. Cereal Chem 73:601–604

    CAS  Google Scholar 

  • Boehmer EW, Hanlon DL (1993) Biodegradable expanded foam material. US Patent 5,272,181, 21 Dec 1993

    Google Scholar 

  • Bonin M (2010) An Investigation into the properties of starch-based foams. Thesis, Brunel University

    Google Scholar 

  • Carvalho F, Bilck AP, Yamashita F et al (2017) Baked foams based on cassava starch coated with polyvinyl alcohol with a higher degree of hydrolysis. J Polym Environ 26(4):1445–1452. https://doi.org/10.1007/s10924-017-1046-x

    Article  CAS  Google Scholar 

  • Cha JY, Chung DS, Seib PA et al (2001) Physical properties of starch-based foams as affected by extrusion temperature and moisture content. Ind Crop Prod 14:23–30

    Article  CAS  Google Scholar 

  • Chiellini E, Cinelli P, Ilieva VI, Imam SH et al (2009) Environmentally compatible foamed articles based on potato starch, corn fiber, and poly (vinyl alcohol). J Cell Plast 45:17–32

    Article  CAS  Google Scholar 

  • Chinnaswamy R, Hanna MA (1996) Biodegradable polymers. US Patent 5,496,895, 5 Mar 1996

    Google Scholar 

  • Cinelli P, Chiellini E, Lawton JW et al (2006) Foamed articles based on potato starch, corn fibers and poly (vinyl alcohol). Polym Degrad Stab 91:1147–1155

    Article  CAS  Google Scholar 

  • Debiagi F, Mali S (2012) Functional properties of extruded nanocomposites based on cassava starch, polyvinyl alcohol and montmorillonite. Macromol Symp 319:235–239

    Article  CAS  Google Scholar 

  • Debiagi F, Mali S, Grossmann MVE et al (2010) Efeito de fibras vegetais nas propriedades de compĂ³sitos biodegradĂ¡veis de amido de mandioca produzidos via extrusĂ£o. Cienc Agrotec 34:1522–1529

    Article  Google Scholar 

  • Debiagi F, Mali S, Grossmann MVE et al (2011) Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Braz Arch Biol Technol 54:1043–1052

    Article  CAS  Google Scholar 

  • Debiagi F, Kobayashi RKT, Nakazato G et al (2014) Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Ind Crop Prod 52:666–670

    Article  CAS  Google Scholar 

  • Debiagi F, Marim BM, Mali S (2015) Properties of cassava bagasse and polyvinyl alcohol biodegradable foams. J Polym Environ 23:269–276

    Article  CAS  Google Scholar 

  • Faria FO, Vercelheze AES, Mali S (2012) Propriedades fĂ­sicas de filmes biodegradĂ¡veis Ă  base de amido de mandioca, Ă¡lcool polivinĂ­lico e montmorilonita. Quim Nova 35:487–492

    Article  CAS  Google Scholar 

  • Fisk D (2002) Method for forming biodegradable foamed product from starch. US Patent 6,406,649 B1, 18 June 2002

    Google Scholar 

  • Fujita S, Fujiyama G (1993) The study of melting temperature and enthalpy of starch from rice, barley, wheat, foxtail and proso-millets. Starch/Starke 45:436–441

    Article  CAS  Google Scholar 

  • Glenn GM, Orts WJ (2001) Properties of starch-based foam formed by compression/explosion processing. Ind Crop Prod 13:135–143

    Article  CAS  Google Scholar 

  • Glenn GM, Orts WJ, Nobes GAR (2001) Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Ind Crop Prod 14:201–212

    Article  CAS  Google Scholar 

  • Goodship V (2009) Polyvinyl alcohol: materials, processing and applications. Smithers Rapra Press, Shrewsbury

    Google Scholar 

  • Guan J, Hanna MA (2004) Functional properties of extruded foam composites of starch acetate and corn cob fiber. Ind Crop Prod 19:255–269

    Article  CAS  Google Scholar 

  • Guan J, Hanna MA (2006) Selected morphological and functional properties of extruded acetylated starch–cellulose foams. Bioresour Technol 97:1716–1726

    Article  CAS  PubMed  Google Scholar 

  • Harper JM (ed) (1981) Extrusion of foods. CRC Press, Boca Raton

    Google Scholar 

  • Hepburn C, Alam N (1991) Influence of fillers on rubber foam properties. Cell Polym 10:99–116

    CAS  Google Scholar 

  • Hofmann T, Linke L, Tsiapouris A et al (1998) Porous materials made from starch. Chem Eng Technol 27:580–584

    Article  Google Scholar 

  • Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2012) Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind Crop Prod 37:542–546

    Article  CAS  Google Scholar 

  • Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2014) Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr Polym 110:70–77

    Article  CAS  PubMed  Google Scholar 

  • Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci 54:165–176

    CAS  Google Scholar 

  • Lacourse NL, Altieri PA (1991a) Biodegradable shaped products and the method of preparation thereof. US Patent, 5,035,930, 30 July 1991

    Google Scholar 

  • Lacourse NL, Altieri PA (1991b) Biodegradable shaped products and the method of preparation thereof. US Patent, 5,043,196, 27 Aug 1991

    Google Scholar 

  • Lawton JW, Shogren RL, Tiefenbacher KF (1999) Effect of batter solids and starch type on the structure of baked starch foams. Cereal Chem 75:682–687

    Article  Google Scholar 

  • Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for starch nanocomposites: a review. React Funct Polym 85:97–120

    Article  CAS  Google Scholar 

  • Lee SY, Hanna MA (2008) Tapioca starch-poly (lactic acid)-cloisite 30B nanocomposite foams. Polym Compos 30:665–672

    Article  CAS  Google Scholar 

  • Lee SY, Chen H, Hanna MA (2008) Preparation and characterization of tapioca starch–poly (lactic acid) nanocomposite foams by melt intercalation based on clay type. Ind Crop Prod 28:95–106

    Article  CAS  Google Scholar 

  • Liu D, Ma Z, Wang Z et al (2014) Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30:9544–9550

    Article  CAS  PubMed  Google Scholar 

  • Machado CM, Benelli P, Tessaro IC (2017) Sesame cake incorporation on cassava starch foams for packaging use. Ind Crop Prod 102:115–121

    Article  CAS  Google Scholar 

  • Mali S, Debiagi F, Grossmann MVE et al (2010a) Starch, sugarcane bagasse fibre and polyvinyl alcohol effects on extruded foam properties: a mixture design approach. Ind Crop Prod 32:353–359

    Article  CAS  Google Scholar 

  • Mali S, Grossmann MVE, Yamashita F (2010b) Filmes de amido: produĂ§Ă£o, propriedades e potencial de utilizaĂ§Ă£o. Semin-Cienc Agrar 31:137–156

    Article  CAS  Google Scholar 

  • Mali S, Bilck AP, Yamashita F et al (2016) Processo de produĂ§Ă£o de bandeja biodegradĂ¡vel a base de amido de mandioca e Ă¡lcool polivinĂ­lico com aĂ§Ă£o antimicrobiana. BR Patent 1020160012759, 20 Jan 2016

    Google Scholar 

  • Marengo VA, Vercelheze AES, Mali S (2013) CompĂ³sitos biodegradĂ¡veis de amido de mandioca e resĂ­duos da agroindĂºstria. Quim Nova 36:680–685

    Article  CAS  Google Scholar 

  • Maria TCM, Carvalho RA, Sobral PJA et al (2008) The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. J Food Eng 87:191–199

    Article  CAS  Google Scholar 

  • Matsuda DNK, Vercelheze AES, Carvalho GM et al (2013) Baked foams of cassava starch and organically modified nanoclays. Ind Crop Prod 44:705–711

    Article  CAS  Google Scholar 

  • Mello LRPF, Mali S (2014) Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Ind Crop Prod 55:187–193

    Article  CAS  Google Scholar 

  • Mihai M, Huneault MA, Favis BD et al (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci 7:907–920

    Article  CAS  PubMed  Google Scholar 

  • Moraes IC, Silva GGD, Carvalho RA et al (2008) InfluĂªncia do grau de hidrĂ³lise do poli(vinil Ă¡lcool) nas propriedades fĂ­sicas de filmes Ă  base de blendas de gelatina e poli(vinil Ă¡lcool) plastificados com glicerol. Cienc Tecnol Alime 28:738–745

    Article  Google Scholar 

  • Nabar Y, Raquez JM, Dubois P et al (2005) Production of starch foams by twin-screw extrusion: effect of maleated poly (butylene adipate-co-terephthalate) as a compatibilizer. Biomacromolecules 6:807–817

    Article  CAS  PubMed  Google Scholar 

  • Nabar Y, Narayan R, Schindler M (2006) Twin-screw extrusion production and characterization of starch foam products for use in cushioning and insulation applications. Polym Eng Sci 46:438–451

    Article  CAS  Google Scholar 

  • Salgado PR, Schmidt VC, Ortiz SE et al (2008) Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. J Food Eng 85:435–443

    Article  CAS  Google Scholar 

  • Schmidt VC, Laurindo JB (2010) Characterization of foams obtained from cassava starch, cellulose fibres and dolomitic limestone by a thermopressing process. Braz Arch Biol Technol 53:185–192

    Article  CAS  Google Scholar 

  • Shogren RL (1992) Effect of moisture content on the melting and subsequent physical aging of cornstarch. Carbohydr Polym 19:83–90

    Article  CAS  Google Scholar 

  • Shogren RL, Lawton JW, Doanne WM et al (1998) Structure and morphology of baked foams. Polymer 39:6649–6655

    Article  CAS  Google Scholar 

  • Silva A, Nievola LM, Tischer CA et al (2013) Cassava starch-based foams reinforced with bacterial cellulose. J Appl Polym Sci 130:3043–3049

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Supaphol P, Rujiravanit R (2004) Preparation and characterization of jute and flax reinforced starch-based composite foams. Carbohydr Polym 58:53–63

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Thanomsilp C, Suwantong O (2015) A review: starch-based composite foams. Compos Part A Appl Sci Manuf 78:246–263

    Article  CAS  Google Scholar 

  • Stagner J, Narayan R (2011) Preparation and properties of biodegradable foams. J Polym Environ 19:598–606

    Article  CAS  Google Scholar 

  • SuĂ¡rez G, GutiĂ©rrez TJ (2017) Recent advances in the development of biodegadable films and foams from cassava starch. In: Klein C (ed) Handbook on Cassava: production, potential uses and recent advances. Editorial Nova Science Publishers, Inc., New York, pp 297–312. EE.UU. ISBN: 978-1-53610-307-6

    Google Scholar 

  • Sudhamani SR, Prasad MS, Sankar KU (2003) DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films. Food Hydrocoll 17:245–250

    Article  CAS  Google Scholar 

  • Tang S, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16

    Article  CAS  Google Scholar 

  • Tatarka PD, Cunningham RL (1998) Properties of protective loose-fill foams. J Appl Polym Sci 67:1157–1176

    Article  CAS  Google Scholar 

  • Tiefenbacher KF (1993) Starch-based foamed materials—use and degradation properties. JMS Pure Appl Chem A 30(9/10):727–731

    Google Scholar 

  • Van Soest JJG, Hulleman SHD, de Wit D et al (1996) Crystallinity in starch bioplastics. Ind Crop Prod 5:11–22

    Article  Google Scholar 

  • Vercelheze AES, Fakhouri FM, Dall’antĂ´nia LH et al (2012) Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite. Carbohydr Polym 87:1302–1310

    Article  CAS  Google Scholar 

  • Wang S, Ren J, Li W et al (2014) Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydr Polym 103:94–99

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lee RE, Wang G (2017) Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. Chem Eng J 327:1151–1162

    Article  CAS  Google Scholar 

  • Willett JL, Shogren RL (2002) Processing and properties of extruded starch/Polymer foams. Polymer 43:5935–5947

    Article  CAS  Google Scholar 

  • Xu Y, Hanna MA (2005) Preparation and properties of biodegradable foams from starch acetate and poly(tetramethylene adipate-co-terephthalate). Carbohydr Polym 59:521–529

    Article  CAS  Google Scholar 

  • Xu H, Xie L, Jiang X et al (2014) Structural basis for unique hierarchical cylindrites induced by ultrahigh shear gradient in single natural fiber reinforced poly(lactic acid) green composites. Biomacromolecules 15:1676–1686

    Article  CAS  PubMed  Google Scholar 

  • Zhang JF, Sun X (2007a) Biodegradable foams of poly(lactic acid)/starch I. Extrusion condition and cellular size distribution. J Appl Polym Sci 106:857–862

    Article  CAS  Google Scholar 

  • Zhang JF, Sun X (2007b) Biodegradable foams of poly(lactic acid)/starch II. Cellular structure and water resistance. J Appl Polym Sci 106:3058–3062

    Article  CAS  Google Scholar 

  • Zimmermann MVG, Brambilla VC, Brandalise RN (2013) Observations of the effects of different chemical blowing agents on the degradation of poly(lactic acid) foams in simulated soil. Mater Res 16:1266–1273

    Article  CAS  Google Scholar 

  • Zobel HF (ed) (1964) Methods in carbohydrate chemistry. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Mali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mali, S. (2018). Biodegradable Foams in the Development of Food Packaging. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_12

Download citation

Publish with us

Policies and ethics