Skip to main content
Log in

Properties of Cassava Bagasse and Polyvinyl Alcohol Biodegradable Foams

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objectives of this work were to develop biodegradable foam trays based on cassava bagasse (CB) and polyvinyl alcohol (PVA) and to study the effects of these components on the microstructure, physicochemical and mechanical properties of the trays. The trays were produced by baking mixtures of 90–100 % (w/w) of CB and 0–10 % (w/w) of PVA. All of the formulations were able to form well-shaped and homogeneous trays with a good appearance. Incorporation of PVA improved the production yield and reduced the water sorption capacity of the produced materials, mainly at low levels. Moreover, the addition of PVA resulted in an increase in stress and strain at break values. The most positive effects of PVA were obtained when this polymer was used at lower levels (2.5 and 5.0 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmidt PNS, Cioffi MOH, Voorwald KJC, Silveira JL (2011) Procedia Eng 10:930–935

    Article  CAS  Google Scholar 

  2. Vercelheze AES, Fakhouri FM, Dall’antônia LH, Urbano A, Youssef AE, Yamashita F, Mali S (2012) Carbohyd Polym 87:1302–1310

    Article  CAS  Google Scholar 

  3. Vercelheze AES, Oliveira AMO, Rezende MI, Muller CMO, Yamashita F, Mali S (2013) J Polym Environ 21:266–274

    Article  CAS  Google Scholar 

  4. Matsuda DKM, Vercelheze AES, Carvalho GM, Yamashita F, Mali S (2013) Ind Crop Prod 44:705–711

    Article  CAS  Google Scholar 

  5. Cinelli P, Chiellini E, Lawton JW, Imam SH (2006) Polym Degradd Stabil 91:1147–1155

    Article  CAS  Google Scholar 

  6. Chiellini E, Cinelli P, Ilieva VI, Imam SH, Lawton JL (2009) J Cell Plastic 45:17–32

    Article  CAS  Google Scholar 

  7. Souza TAC, Soares M Jr, Campos MRH, Souza TSC, Bandeira LC (2013) Food Sci Technol. doi:10.1590/S0101-20612013005000070

  8. Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Carbohyd Polym 78:422–431

    Article  CAS  Google Scholar 

  9. Matsui KN, Larotonda FDS, Paes SS, Luiz DB, Pires ATN, Laurindo JB (2004) Carbohyd Polym 55:237–243

    Article  CAS  Google Scholar 

  10. John MJ, Thomas S (2008) Carbohyd Polym 71:343–364

    Article  CAS  Google Scholar 

  11. Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS, Mohan R (2000) Bioresour Technol 74:81–87

    Article  CAS  Google Scholar 

  12. Teixeira B, Marquesa A, Ramos C, Neng NR, Nogueira JMF, Saraiva JA, Nunes ML (2013) Ind Crop Prod 43:587–595

    Article  CAS  Google Scholar 

  13. Carr LG, Parra DF, Ponce P, Lugão AB, Buchler PM (2006) J Polym Environ 14:179–183

    Article  CAS  Google Scholar 

  14. Aranha IB, Lucae EF (2001) Polímeros 11:174

    Article  CAS  Google Scholar 

  15. Shogren RL, Lawton JW, Doanne WM, Tiefenbacher FK (1998) Polymer 39:6649–6655

    Article  CAS  Google Scholar 

  16. Debiagi F, Mali S, Grossmann MVE, Yamashita F (2011) Braz Arch Biol Technol 54:1043–1052

    Article  CAS  Google Scholar 

  17. Mali S, Debiagi F, Grossmann MVE, Yamashita F (2010) Ind Crop Product 32:353–359

    Article  CAS  Google Scholar 

  18. Alves RML, Grossmann MVE, Silva RSF (1999) Food Chem 67:123–127

    Article  CAS  Google Scholar 

  19. Ruland BW (1961) Acta Cryst 14:1180

    Article  CAS  Google Scholar 

  20. ABNT – Associação Brasileira de normas Técnicas. NBR NM ISO 535: Papel e Cartão. Determinação da capacidade de absorção de água. Método de Cobb (1999)

  21. Rockland LB (1960) Anal Chem 32:1375–1376

    Article  CAS  Google Scholar 

  22. Bizot H (1984) In: Jowitt R, Escher F, Hallistrom B, Meffert HFT, Spiess WEL, Vos G (eds) Physical properties of foods. Applied Science Publishers, London, pp 27–41

    Google Scholar 

  23. Faria FO, Vercelheze AES, Mali S (2012) Quím Nova 35(3):487–492

    Article  CAS  Google Scholar 

  24. Matsumura S, Tomizawa N, Toki A, Nishikawa K, Toshima K (1999) Macromolecule 32:7753

    Article  CAS  Google Scholar 

  25. Sudhamani SR, Prasad MS, Sankar UK (2003) Food Hydrocoll 17:245

    Article  CAS  Google Scholar 

  26. Moraes IC, Silva GGD, Habitante AMQB, Bergo PVA, Sobral PJA (2008) Ciênc Tecnol Aliment 3:738

    Article  Google Scholar 

  27. Nabar Y, Raquez JM, Dubois P, Narayan R (2005) Biomacromolecules 6:807–817

    Article  CAS  Google Scholar 

  28. Famá L, Gerschenson L, Goyanes S (2009) Carbohyd Polym 75:230–235

    Article  Google Scholar 

  29. Pasquini D, Teixeira EM, Curvelo AAS, Belgacem MN, Dufresne A (2010) Ind Crop Product 32:486–490

    Article  CAS  Google Scholar 

  30. Buléon A, Colonna P, Planchot V, Ball S (1998) Int J Biol Macromol 23:85–112

    Article  Google Scholar 

  31. Huang J, Schols HA, Van Soest JJG, Jin Z, Sulmann E, Voragen AGJ (2007) Food Chem 101:1338–1345

    Article  CAS  Google Scholar 

  32. Costa ES Jr, Mansur HS (2008) Quim Nova 31:1460–1466

    Article  CAS  Google Scholar 

  33. Mallakpour S, Barat A (2012) Amino Acids 42:1287–1295

    Article  CAS  Google Scholar 

  34. Tripathi J, Keller JM, Das K, Tripathi S, Fatima A, Shripathi T (2012) Appl Surf Sci 1:1–26

    CAS  Google Scholar 

  35. Van Soest JJG, Knooren N (1997) J Appl Polym Sci 64:1411–1422

    Article  Google Scholar 

  36. Preechawong D, Pessan M, Rujiravanit R, Supaphol P (2004) Macromol Symp 216:217–227

    Article  CAS  Google Scholar 

  37. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  38. Strauss UP, Porcja RJ, Chen Y (1991) In: Levine H, Slade L (eds) Water relationships in foods. Plenum Press, New York, pp 351–364

    Chapter  Google Scholar 

  39. Tang X, Alavi S (2011) Carbohyd Polym 85:7–16

    Article  CAS  Google Scholar 

  40. Iriani ES, Tedja TI, Sunarti TC, Richana N, Yuliasih I (2012) Eur J Scientific Res 81:47–58

    Google Scholar 

  41. Schmidt VCR, Laurindo JB (2010) Braz Arch Biol Techn 53:185–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Laboratory of Microscopy and Microanalysis (LMEM) and the Laboratory of X-Ray Diffraction (LARX)—State University of Londrina for the analyses, and CNPq—Brazil (No. 479768-2012-9) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Mali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debiagi, F., Marim, B.M. & Mali, S. Properties of Cassava Bagasse and Polyvinyl Alcohol Biodegradable Foams. J Polym Environ 23, 269–276 (2015). https://doi.org/10.1007/s10924-014-0705-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-014-0705-4

Keywords

Navigation