Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Twenty years ago, an intriguing link emerged between two very different kinds of theories. On the one side of this link are quantum gauge theories, akin to the ones describing the electroweak and strong forces which govern nature on the microscopic scales of particle physics. On the other side of this link are theories of gravity, the force which governs nature on the macroscopic scales of cosmology and black holes. At the time, string theory was found to contain extended objects that are described by gauge fields in one limit and by gravity in another limit. Crucially, the limit in which the gravity description becomes appropriate corresponds to the limit in which the gauge theory becomes strongly coupled. The gauge/gravity duality [1–4] asserts that these two descriptions are in fact equivalent for all values of the gauge coupling, albeit typically only one side of the duality is tractable. At weak gauge coupling, the gauge theory is under perturbative control, whereas the dual gravitational degrees of freedom couple to the whole tower of string excitations and can no longer be treated classically. Conversely, at strong gauge coupling, the gauge degrees of freedom defy a perturbative treatment, but they rearrange themselves into a dual description in terms of classical gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). arXiv:hep-th/9711200

    Article  MathSciNet  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105–114 (1998). arXiv:hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150

    Article  MathSciNet  ADS  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). arXiv:hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

  5. G. ’t Hooft, Dimensional reduction in quantum gravity, in Salamfest (1993), pp. 0284–0296. arXiv:gr-qc/9310026

  6. L. Susskind, The World as a hologram. J. Math. Phys. 36, 6377–6396 (1995). arXiv:hep-th/9409089

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). arXiv:hep-th/0405231

    Article  ADS  Google Scholar 

  8. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions (Cambridge University Press, Cambridge, 2014). https://doi.org/10.1017/CBO9781139136747

  9. S.A. Hartnoll, A. Lucas, S. Sachdev, Holographic quantum matter. arXiv:1612.07324

  10. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP 04, 100 (2008). arXiv:0712.2451

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Bhattacharyya, V.E. Hubeny, S. Minwalla, M. Rangamani, Nonlinear fluid dynamics from gravity. JHEP 02, 045 (2008). arXiv:0712.2456

    Google Scholar 

  12. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D 78, 065034 (2008). arXiv:0801.2977

    Article  ADS  Google Scholar 

  13. P. Kleinert, J. Probst, Second-order hydrodynamics and universality in non-conformal holographic fluids. JHEP 12, 091 (2016). arXiv:1610.01081

  14. M. Haack, A. Yarom, Universality of second order transport coefficients from the gauge-string duality. Nucl. Phys. B 813, 140–155 (2009). arXiv:0811.1794

    Article  MathSciNet  ADS  Google Scholar 

  15. A. O’Bannon, I. Papadimitriou, J. Probst, A holographic two-impurity Kondo model. JHEP 01, 103 (2016). arXiv:1510.08123

    Google Scholar 

  16. J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst, J.M.S. Wu, Holographic Kondo and Fano resonances. Phys. Rev. D 96, 021901 (2017). arXiv:1611.09368

  17. J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst, J.M.S. Wu, Two-point functions in a holographic Kondo model. JHEP 03, 039 (2017). arXiv:1612.02005

  18. J. Erdmenger, C. Hoyos, A. O’Bannon, J. Wu, A Holographic model of the Kondo effect. JHEP 12, 086 (2013). arXiv:1310.3271

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Probst .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Probst, J. (2018). Outline. In: Applications of the Gauge/Gravity Duality. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93967-4_1

Download citation

Publish with us

Policies and ethics