Skip to main content

Antifungal Plant Defensins: Insights into Modes of Action and Prospects for Engineering Disease-Resistant Plants

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 2

Abstract

Defensins are small, cysteine-rich peptides that are ubiquitously present in all plants. They are important components of the plant immune system and serve as first line of defense against invading pathogens. Plant defensins share conserved tetradisulfide connectivity but vary in their sequence, net charge, and hydrophobicity. A number of plant defensins with potent broad-spectrum antifungal activity have been identified and characterized. Studies conducted during the past decade have highlighted the diverse modes of action (MOA) of a few antifungal defensins. Constitutive expression of these defensins has been demonstrated to confer in planta resistance to several economically important fungal and oomycete pathogens in transgenic crops. Here, we provide a brief review of recent findings that have contributed to our current understanding of the MOA of these peptides and their deployment for disease resistance in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Skadsen RW, Kaeppler HF (2005) A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. Planta 221:170–183

    Article  CAS  PubMed  Google Scholar 

  • Abebe T, Skadsen R, Patel M, Kaeppler H (2006) The Lem2 gene promoter of barley directs cell- and development-specific expression of gfp in transgenic plants. Plant Biotechnol J 4:35–44

    Article  CAS  PubMed  Google Scholar 

  • Aerts AM, François IEJA, Cammue BPA, Thevissen K (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65:2069–2079

    Article  CAS  PubMed  Google Scholar 

  • Baxter AA, Richter V, Lay FT, Poon IKH, Adda CG, Veneer PK, Phan TK, Bleackley MR, Anderson MA, Kvansakul M, Hulett MD (2015) The tomato defensin TPP3 binds phosphatidylinositol (4,5)-bisphosphate via a conserved dimeric cationic grip conformation to mediate cell lysis. Mol Cell Biol 35:1964–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter AA, Poon IKH, Hulett MD (2017) The lure of the lipids: how defensins exploit membrane phospholipids to induce cytolysis in target cells. Cell Death Dis 8:e2712

    Article  PubMed  PubMed Central  Google Scholar 

  • Bleackley MR, Payne JAE, Hayes BME, Durek T, Craik DJ, Shafee TMA, Poon IKH, Hulett MD, van der Weerden NL, Anderson MA (2016) Nicotiana alata defensin chimeras reveal differences in the mechanism of fungal and tumour cell killing and an enhanced antifungal variant. Antimicrob Agents Chemother 60:6302–6312

    Article  PubMed  PubMed Central  Google Scholar 

  • Broekaert WF, Cammue BPA, De Bolle MFC, Thevissen K, De Samblanx GW, Osborn RW, Nielson K (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323

    Article  CAS  Google Scholar 

  • Carvalho Ade O, Gomes VM (2009) Plant defensins-prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020

    Article  CAS  PubMed  Google Scholar 

  • Colilla FJ, Rocher A, Mendez E (1990) Gamma-purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270:191–194

    Article  CAS  PubMed  Google Scholar 

  • Collinge DB, Jorgensen HJ, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    Article  CAS  PubMed  Google Scholar 

  • Cools TL, Vriens K, Struyfs C, Verbandt S, Ramada MHS, Brand GD, Block C Jr, Koch B, Traven A, Drijfhout JW, Demuyser L, Kucharikova S, Van Dijck P, Spasic D, Lammertyn J, Cammune BPA, Thevissen K (2017) The antifungal plant defensin HsAFP1 is a phosphatidic acid-interacting peptide inducing membrane permeabilization. Front Microbiol 8:2295. https://doi.org/10.3389/fmicb.2017.02295

    Article  PubMed  PubMed Central  Google Scholar 

  • De Coninck B, Cammue BPA, Thevissen K (2013) Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol Rev 26:109–120

    Article  Google Scholar 

  • El-Mounadi K, Islam KT, Hernández-Ortiz P, Read ND, Shah DM (2016) Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi Neurospora crassa and Fusarium graminearum. Mol Microbiol 100:542–559

    Article  CAS  PubMed  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Anderson MA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Exp Bot 65:1541–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, Kumlehn J, Schweizer P (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang S-H, Lee IA, Yie SW, Hwang D-J (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam KT, Velivelli SLS, Berg RH, Oakley B, Shah DM (2017) A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers. Sci Rep 7:16157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Sagaram US, Shah D (2011) Can plant defensins be used to engineer durable commercially useful fungal resistance in crop plants? Fungal Biol Rev 25:128–135

    Article  Google Scholar 

  • Kaur J, Thokala M, Robert-Seilaniantz A, Zhao P, Peyret H, Berg H, Pandey S, Jones J, Shah D (2012) Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis. Mol Plant Pathol 13:1032–1046

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Fellers J, Adholeya A, Velivelli SL, El-Mounadi K, Nersesian N, Clemente T, Shah D (2017) Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat. Transgenic Res 26:37–49

    Article  CAS  PubMed  Google Scholar 

  • Kvansakul M, Lay FT, Adda CG, Veneer PK, Baxter AA, Phan TK, Poon IKH, Hulett MD (2016) Binding of phosphatidic acid by NsD7 mediates the formation of helical defensin-lipid oligomeric assemblies and membrane permeabilization. Proc Natl Acad Sci 113:11202–11207

    Article  CAS  PubMed  Google Scholar 

  • Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay FT, Mills GD, Poon IK, Cowieson NP, Kirby N, Baxter AA, van der Weerden NL, Dogovski C, Perugini MA, Anderson MA, Kvansakul M, Hulett MD (2012) Dimerization of plant defensin NaD1 enhances its antifungal activity. J Biol Chem 287:19961–19972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay FT, Poon S, McKenna JA, Connelly AA, Barbeta BL, McGinness BS, Fox JL, Daly NL, Craik DJ, Heath RL, Anderson MA (2014) The C-terminal propeptide of a plant defensin confers cytoprotective and subcellular targeting functions. BMC Plant Biol 14:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Mazarei M, Rudis MR, Fethe MH, Stewart CN (2011) Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnol 11:108–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, Bellio M, Campos RC, Linden R, Kurtenbach E (2007) Antifungal Pisum sativumdefensin 1 interacts with Neurospora crassa Cyclin F related to the cell cycle. Biochemistry 46:987–996

    Article  CAS  PubMed  Google Scholar 

  • Mendez E, Moreno A, Colilla F, Pelaez F, Limas GG, Mendez R, Soriano F, Salinas M, de Haro C (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem 194:533–539

    Article  CAS  PubMed  Google Scholar 

  • Munoz A, Chu M, Marris PI, Sagaram US, Kaur J, Shah DM, Read ND (2014) Specific domains of plant defensins differentially disrupt colony initiation, cell fusion and calcium homeostasis in Neurospora crassa. Mol Microbiol 92:1357–1374

    Article  CAS  PubMed  Google Scholar 

  • Poon IKH, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JAE, Phan TK, Ryan GF, White JA, Veneer PK, van der Weerden NL, Anderson MA, Kvansakul M, Hulett MD (2014) Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. elife 3:e01808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacon O, Lopez Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BP, Borras-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    Article  CAS  PubMed  Google Scholar 

  • Sagaram US, El-Mounadi K, Buchko GW, Berg HR, Kaur J, Pandurangi RS, Smith TJ, Shah DM (2013) Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. PLoS One 8(12):e82485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma KK, Pothana A, Prasad K, Shah D, Kaur J, Bhatnagar D, Chen ZY, Raruang Y, Cary JW, Rajasekaran K, Sudini HK, Bhatnagar-Mathur P (2017) Peanuts that keep aflatoxin at bay: a threshold that matters. Plant Biotechnol J 16:1024. https://doi.org/10.1111/pbi.12846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol 135:2055–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakare D, Zhang J, Wing RA, Cotty PJ, Schmidt MA (2017) Aflatoxin-free transgenic maize using host-induced gene silencing. Sci Adv 3:e1602382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (1997) Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassahyphae and microsomal membranes. J Biol Chem 272:32176–32181

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Terras FRG, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KK, Van Even F, Parret AH, Broekaert WF (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci U S A 97:9531–9536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevissen K, François IEJA, Takemoto JY, Ferket KKA, Meert EM, Cammue BPA (2003) DmAMP1, an antifungal palnt defensins from dahlia (Dahlia merckii), interats with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226:169–173

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Warnecke DC, François IEJA, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BPHJ, Ferket KKA, Cammue BPA (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Francois IE, Aerts AM, Cammue BP (2005) Fungal sphingolipids as targets for the development of selective antifungal therapeutics. Curr Drug Targets 6:923–928

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Francois IE, Winderickx J, Pannecouque C, Cammue BP (2006) Ceramide involvement in apoptosis and apoptotic diseases. Mini Rev Med Chem 6:699–709

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Kristensen H-H, Thomma BPHJ, Cammue BPA, François IEJA (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283:14445–14452

    Article  CAS  PubMed  Google Scholar 

  • van der Weerden NL, Hancock REW, Anderson MA (2010) Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem 285:37513–37520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci CMLS 70:3545–3570

    Article  CAS  PubMed  Google Scholar 

  • Vriens K, Peigneur S, De Coninck B, Tytgat J, Cammue BPA, Thevissen K (2016) The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels. Sci Rep 6:32121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jagdeep Kaur or Dilip Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, J., Velivelli, S.L., Shah, D. (2018). Antifungal Plant Defensins: Insights into Modes of Action and Prospects for Engineering Disease-Resistant Plants. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_6

Download citation

Publish with us

Policies and ethics