Skip to main content

Physiological Substrates of RBD Subtypes

  • Chapter
  • First Online:
Rapid-Eye-Movement Sleep Behavior Disorder

Abstract

During the last 10 years, two of the major discoveries made on the control of waking and sleep that have helped revolutionize our understanding of these two states will be addressed in regard to their relevance to RBD and its subtypes. This research was directed at the partly cholinergic pedunculopontine nucleus (PPN), the portion of the reticular activating system (RAS) that is active during waking and REM sleep, but less active during slow-wave sleep, and at its REM sleep-related target, the subcoeruleus nucleus dorsalis (SubCD). As such, the PPN modulates the manifestation of waking through ascending projections to the intralaminar thalamus, as well as the manifestation of REM sleep through descending projections to the SubCD. It was found that these regions possess a proportion of cells that are electrically coupled through gap junctions, thus promoting coherence within each nucleus, and that every cell in the PPN manifests gamma-band activity through intrinsic membrane properties that can be exported to its targets. Neither mechanism has been studied extensively for its involvement in RBD or its subtypes. However, there is little doubt that research into these areas will permit a deeper understanding of RBD disease subtypes and their underlying mechanisms and point to novel directions for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia-Rill E. Sleep and arousal states: reticular activating system. In: Squire LR, Bloom F, Spitzer N, Gage F, Albright T, editors. New encyclopedia of neuroscience, vol. 8. Oxford: Elsevier; 2009. p. 137–43.

    Chapter  Google Scholar 

  2. Garcia-Rill E, Kezunovic N, Hyde J, Beck P, Urbano FJ. Coherence and frequency in the reticular activating system (RAS). Sleep Med Rev. 2013;17:227–38.

    Article  PubMed  Google Scholar 

  3. Garcia-Rill E, Kezunovic N, D’Onofrio S, Luster B, Hyde J, Bisagno V, et al. Gamma band activity in the RAS-intracellular mechanisms. Exp Brain Res. 2014;232:1509–22.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Rill E. Waking and the reticular activating system. New York: Academic; 2015. p. 330.

    Google Scholar 

  5. Steriade M. Cellular substrates of oscillations in corticothalamic systems during states of vigilance. In: Lydic R, Baghdoyan HA, editors. Handbook of behavioral state control. Cellular and molecular mechanisms. New York: CRC Press; 1999. p. 327–47.

    Google Scholar 

  6. Wang HL, Morales M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci. 2009;29:340–58.

    Article  PubMed  Google Scholar 

  7. Leonard CS, Llinas RR. Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: implications for the behavior of REM sleep. In: Steriade M, Biesold D, editors. Brain cholinergic systems. Oxford: Oxford Science; 1990. p. 205–23.

    Google Scholar 

  8. Kamondi A, Williams J, Hutcheon B, Reiner P. Membrane properties of mesopontine cholinergic neurons studied with the whole-cell patch-clamp technique: implications for behavioral state control. J Neurophysiol. 1992;68:1359–72.

    Article  CAS  PubMed  Google Scholar 

  9. Takakusaki K, Kitai ST. Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neuroscience. 1997;78:771–94.

    Article  CAS  PubMed  Google Scholar 

  10. Steriade M, Paré D, Datta S, Oakson G, Curro Dossi R. Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci. 1990;10:2560–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, gabaergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci. 2014;34:4708–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakai K, El Mansari M, Jouvet M. Inhibition by carbachol microinjections of presumptive cholinergic PGO-on neurons in freely moving cats. Brain Res. 1990;527:213–23.

    Article  CAS  PubMed  Google Scholar 

  13. Datta S, Siwek DF. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J Neurosci Res. 2002;70:79–82.

    Article  CAS  Google Scholar 

  14. Steriade M, Curro Dossi R, Paré D, Oakson G. Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci U S A. 1991;88:4396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Datta S, Patterson EH, Spoley EE. Excitation of the pedunculopontine tegmental NMDA receptors induces wakefulness and cortical activation in the rat. J Neurosci Res. 2001;66:109–16.

    Article  CAS  PubMed  Google Scholar 

  16. Datta S, Spoley EE, Patterson EH. Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol. 2001;280:R752–9.

    Article  CAS  PubMed  Google Scholar 

  17. Datta S. Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor. J Neurophysiol. 2002;87:1790–8.

    Article  CAS  PubMed  Google Scholar 

  18. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 1953;118:273–4.

    Article  CAS  PubMed  Google Scholar 

  19. Datta S, Siwek DF, Patterson EH, Cipolloni PB. Localization of pontine PGO wave generation sites and their anatomical projections in the rat. Synapse. 1998;30:409–23.

    Article  CAS  PubMed  Google Scholar 

  20. Mouret J, Delorme F, Jouvet M. Lesions of the pontine tegmentum and sleep in rats. C R Seances Soc Biol Fil. 1967;161:1603–6.

    CAS  PubMed  Google Scholar 

  21. Marks GA, Farber J, Roffwarg HP. Metencephalic localization of ponto-geniculo-occipital waves in the albino rat. Exp Neurol. 1980;69:667–77.

    Article  CAS  PubMed  Google Scholar 

  22. Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA. Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res. 1984;306:39–52.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto K, Mamelak AN, Quattrochi JJ, Hobson JA. A cholinoceptive desynchronized sleep induction zone in the anterodorsal pontine tegmentum: spontaneous and drug-induced neuronal activity. Neuroscience. 1990;39:295–304.

    Article  CAS  PubMed  Google Scholar 

  24. Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci. 2002;16:1959–73.

    Article  PubMed  Google Scholar 

  25. Datta S, Siwek DF, Stack EC. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep. Neuroscience. 2009;163:397–414.

    Article  CAS  PubMed  Google Scholar 

  26. Mitler MM, Dement WC. Cataplectic-like behavior in cats after micro-injections of carbachol in pontine reticular formation. Brain Res. 1974;68:335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA. A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs. Brain Res. 1987;414:245–61.

    Article  CAS  PubMed  Google Scholar 

  28. Vanni-Mercier G, Sakai K, Lin JS, Jouvet M. Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol. 1989;127:133–64.

    CAS  PubMed  Google Scholar 

  29. Sanford LD, Morrison AR, Mann GL, Harris JS, Yoo L, Ross RJ. Sleep patterning and behavior in cats with pontine lesions creating REM without atonia. J Sleep Res. 1994;3:233–40.

    Article  CAS  PubMed  Google Scholar 

  30. Mavanji V, Ulloor J, Saha S, Datta S. Neurotoxic lesions of phasic pontine-wave generator cells impair retention of 2-way active avoidance memory. Sleep. 2004;27:1282–92.

    Article  PubMed  Google Scholar 

  31. Karlsson KA, Gall AJ, Mohns EJ, Seelke AM, Blumberg MS. The neural substrates of infant sleep in rats. PLoS Biol. 2005;3(e143):891–901.

    CAS  Google Scholar 

  32. Mitani A, Ito K, Hallanger AE, Wainer BH, Kataoka K, McCarley RW. Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine gigantocellular tegmental field in the cat. Brain Res. 1988;451:397–402.

    Article  CAS  PubMed  Google Scholar 

  33. Shiromani PJ, Armstrong DM, Gillin JC. Cholinergic neurons from the dorsolateral pons project to the medial pons: a WGA-HRP and choline acetyltransferase immunohistochemical study. Neurosci Lett. 1988;95:19–23.

    Article  CAS  PubMed  Google Scholar 

  34. Datta S, Patterson EH, Siwek DF. Brainstem afferents of the cholinoceptive pontine wave generation sites in the rat. Sleep Res Online. 1999;2:79–82.

    CAS  PubMed  Google Scholar 

  35. Boissard R, Fort P, Gervasoni D, Barbagli B, Luppi PH. Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci. 2003;18:1627–39.

    Article  PubMed  Google Scholar 

  36. Datta S, Hobson JA. Neuronal activity in the caudolateral peribrachial pons: relationship to PGO waves and rapid eye movements. J Neurophysiol. 1994;71:95–109.

    Article  CAS  PubMed  Google Scholar 

  37. Datta S, Mavanji V, Ulloor J, Patterson EH. Activation of phasic pontine-wave generator prevents rapid eye movement sleep deprivation-induced learning impairment in the rat: a mechanism for sleep-dependent plasticity. J Neurosci. 2004;24:1416–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arrigoni E, Chen MC, Fuller PM. The anatomic, cellular, and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol. 2016;594:5391–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Valencia Garcia S, Libourel PA, Lazarus M, Grassi D, Luppi PH, Fort P. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behavior disorder. Brain. 2017;140:414–28.

    Article  PubMed  Google Scholar 

  40. Garcia-Rill E, Heister DS, Ye M, Charlesworth A, Hayar A. Electrical coupling: novel mechanism for sleep-wake control. Sleep. 2007;30:1405–14.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Heister DS, Hayar A, Charlesworth A, Yates C, Zhou Y, Garcia-Rill E. Evidence for electrical coupling in the SubCoeruleus (SubC) nucleus. J Neurophysiol. 2007;97:3142–7.

    Article  PubMed  Google Scholar 

  42. Garcia-Rill E, Charlesworth A, Heister D, Ye M, Hayar A. The developmental decrease in REM sleep: the role of transmitters and electrical coupling. Sleep. 2008;31:673–90.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Urbano FJ, Leznik E, Llinas R. Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Natl Acad Sci. 2007;104:12554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Evans WH, Boitano S. Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans. 2001;29:606–12.

    Article  PubMed  Google Scholar 

  45. He DS, Burt JM. Mechanism and selectivity of the effects of halothane on gap junction channel function. Circ Res. 2000;86:1–10.

    Article  CAS  Google Scholar 

  46. Boger DL, Henriksen SJ, Cravatt BF. Oleamide: an endogenous sleep-inducing lipid and prototypical member of a new class of biological signaling molecules. Curr Pharm Des. 1998;4:303–14.

    CAS  PubMed  Google Scholar 

  47. Murillo-Rodriguez E, Blanco-Centurion C, Sanchez C, Piomelli D, Shiromani PJ. Anandamide enhances extracellular levels of adenosine and induces sleep: an in vivo microdialysis study. Sleep. 2003;26:943–7.

    Article  PubMed  Google Scholar 

  48. Gigout S, Louvel J, Kawasaki H, D’Antuono M, Armand V, Kurcewicz I, et al. Effects of gap junction blockers on human neocortical synchronization. Neurobiol Dis. 2006;22:496–508.

    Article  CAS  PubMed  Google Scholar 

  49. Gareri P, Condorelli D, Belluardo N, Russo E, Loiacono A, Barresi V, et al. Anticonvulsant effects of carbenoxolone in genetically epilepsy prone rats (GEPRs). Neuropharmacology. 2004;47:1205–16.

    Article  CAS  PubMed  Google Scholar 

  50. Rozental R, Srinivas M, Spray DC. How to close a gap junction channel. In: Bruzzone R, Giaume C, editors. Methods in molecular biology, Vol. 154. Connexin methods and protocols. Totowa: Humana Press; 2000. p. 447–77.

    Chapter  Google Scholar 

  51. Srinivas M, Hopperstad MG, Spray DC. Quinine blocks specific gap junction channel subtypes. Proc Natl Acad Sci. 2001;98:10942–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garcia-Rill E, Luster B, D’Onofrio S, Mahaffey S, Bisagno V, et al. Implications of gamma band activity in the pedunculopontine nucleus. J Neural Transm. 2015;123:655–65.

    Article  PubMed  Google Scholar 

  53. Garcia-Rill E, Luster B, D’Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology—deep brain stimulation (DBS). Sleep Sci. 2015;8:153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kezunovic N, Urbano FJ, Simon C, Hyde J, Smith K, Garcia-Rill E. Mechanism behind gamma band activity in the pedunculopontine nucleus (PPN). Eur J Neurosci. 2011;34:404–15.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Urbano FJ, D’Onofrio SM, Luster BR, Hyde JR, Bosagno V, et al. Pedunculopontine nucleus gamma band activity-preconscious awareness, waking, and REM sleep. Front Sleep Chronobiol. 2014;5:210.

    Google Scholar 

  56. Hyde JR, Kezunovic N, Urbano FJ, Garcia-Rill E. Spatiotemporal properties of high speed calcium oscillations in the pedunculopontine nucleus. J Appl Physiol. 2013;115:1402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fraix V, Bastin J, David O, Goetz L, Ferraye M, et al. Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson’s disease. PLoS One. 2013;8:e83919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, et al. The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state. J Neural Transm. 2016;123:667–78.

    Article  PubMed  Google Scholar 

  59. Stea A, Soomg TW, Snutch TP. Determinants of PKC-dependent modulation of a family of neuronal Ca2+ channels. Neuron. 1995;15:929–40.

    Article  CAS  PubMed  Google Scholar 

  60. Jiang X, Lautermilch NJ, Watari H, Westenbroek RE, Scheuer T, et al. Modulation of Cav2.1 channels by Ca+/calmodulin-dependent kinase II bound to the C-terminal domain. Proc Natl Acad Sci U S A. 2008;105:341–6.

    Article  PubMed  Google Scholar 

  61. Luster B, D’Onofrio S, Urbano FJ, Garcia-Rill E. High-Threshold Ca2+ channels behind gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep. 2015;3:e12431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luster B, Urbano FJ, Garcia-Rill E. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep. 2016;4:e12787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simon C, Kezunovic N, Williams DK, Urbano FJ, Garcia-Rill E. Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons. Am J Physiol Cell Physiol. 2011;301:C327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Castro S, Falconi A, Chase M, Torterolo P. Coherent neocortical 40-Hz oscillations are not present during REM sleep. Eur J Neurosci. 2013;37:1330–9.

    Article  PubMed  Google Scholar 

  65. Cavelli M, Castro S, Schwartzkopf N, Chase M, Falconi A, Torterolo P. Coherent cortical oscillations decrease during REM sleep in the rat. Behav Brain Res. 2015;281:318–25.

    Article  PubMed  Google Scholar 

  66. Torterolo P, Castro-Zaballa S, Cavelli M, Chase M, Falconi A. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy. Eur J Neurosci. 2015;281:318–25.

    Google Scholar 

  67. Steriade M, Pare D, Bouhassira D, Deschenes M, Oakson G. Phasic activation of lateral geniculate and perigeniculate thalamic neurons during sleep with ponto-geniculo-occipital waves. J Neurosci. 1989;9:2215–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chase MH, Morales FR. The control of motoneurons during sleep. In: Roth MH, Dement WC, editors. Principles and practice of sleep medicine. Kryger, London: WB Saunders; 1994. p. 163–76.

    Google Scholar 

  69. Homma Y, Skinner RD, Garcia-Rill E. Effects of pedunculopontine nucleus (PPN) stimulation on caudal pontine reticular formation (PnC) neurons in vitro. J Neurophysiol. 2002;87:3033–47.

    Article  PubMed  Google Scholar 

  70. Koch M, Kungel M, Herbert H. Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res. 1993;97:71–82.

    Article  CAS  PubMed  Google Scholar 

  71. Swerdlow NR, Geyer MA. Prepulse inhibition of acoustic startle in rats after pedunculopontine tegmental nucleus lesions. Behav Neurosci. 1993;107:104–17.

    Article  CAS  PubMed  Google Scholar 

  72. Garcia-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, Leu-Semenescu S, Gallea C, Quattrocchi G, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behavior disorders in Parkinson’s disease. Brain. 2013;136:2120–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ehrminger M, Latimier A, Pyatigorskaya N, Garcia-Lorenzo D, Leu-Semenescu S, Vidailhet M, et al. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behavior disorder. Brain. 2016;139:1180–8.

    Article  PubMed  Google Scholar 

  74. Schenck CH, Mahowald MW. A novel animal model offers deeper insights into human REM sleep behavior disorder. Brain. 2017;140:256–9.

    Article  PubMed  Google Scholar 

  75. Garcia-Rill E, Luster B, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology—implications for insomnia. Sleep Sci. 2015;8:92–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Garcia-Rill E, D’Onofrio S, Luster B, Mahaffey S, Urbano FJ, Phillips C. The 10 Hz Frequency: a fulcrum for transitional brain states. Transl Brain Rhythm. 2016;1:7–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamani C, Aziz T, Bloem BR, Brown P, Chabardes S, Coyne T, et al. Pedunculopontine nucleus region deep brain stimulation in Parkinson disease: surgical anatomy and terminology. Stereotact Funct Neurosurg. 2016;94:298–306.

    Article  PubMed  Google Scholar 

  78. Hamani C, Lozano AM, Mazzone PA, Moro E, Hutchison W, Silburn PA, et al. Pedunculopontine nucleus region deep brain stimulation in Parkinson disease: surgical techniques, side effects, and postoperative imaging. Stereotact Funct Neurosurg. 2016;94:307–19.

    Article  PubMed  Google Scholar 

  79. Zibetti M, Rizzi L, Colloca L, Cinquepalmi A, Angrisano S, Castelli L, et al. Probable REM sleep behaviour disorder and STN-DBS outcome in Parkinson’s Disease. Parkinsonism Relat Disord. 2010;16:265–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kim YE, Jeon BS, Paek SH, Yun JY, Yang HJ, Kim HJ, et al. Rapid eye movement sleep behavior disorder after bilateral subthalamic stimulation in Parkinson’s disease. J Clin Neurosci. 2015;22:315–9.

    Article  PubMed  Google Scholar 

  81. Dauvilliers Y, Jennum P, Plazzi G. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy. Sleep Med. 2013;14:775–81.

    Article  PubMed  Google Scholar 

  82. Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L. Mechanisms of hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A. 2012;109:E2635–44.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Han Y, Shi Y, Xi W, Zhou R, Tan Z, Wang H, et al. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol. 2014;24:693–8.

    Article  CAS  PubMed  Google Scholar 

  84. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73.

    Article  CAS  PubMed  Google Scholar 

  85. Olerup O, Aldener A, Fogdell A. HLA-DQB1 and -DQA1 typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours. Tissue Antigens. 1993;41:119–34.

    Article  CAS  PubMed  Google Scholar 

  86. Schenck CH, Garcia-Rill E, Segall M, Noreen H, Mahowald MW. HLA class II genes associated with REM sleep behavior disorder. Ann Neurol. 1996;39:261–3.

    Article  CAS  PubMed  Google Scholar 

  87. Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH. Hypocretinergic neurons are primarily involved in activation of the somatomotor system. Sleep. 2003;26:25–8.

    PubMed  Google Scholar 

  88. Caillier B, Pilote S, Castonguay A, Patoine D, Ménard-Desrosiers V, Vigneault P, et al. QRS widening and QT prolongation under bupropion: a unique cardiac electrophysiological profile. Fundam Clin Pharmacol. 2012;26:599–608.

    Article  CAS  PubMed  Google Scholar 

  89. Sun J, Liu Y, Yuan Y, Li J, Chen N. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology. 2012;37:1305–20.

    Article  CAS  PubMed  Google Scholar 

  90. Corner MA, Schenck CH. Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: their prenatal origin, postnatal persistence during sleep, and pathological re-emergence during REM sleep behavior disorder. Neurosci Bull. 2015;31:649–62.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Roffwarg HP, Muzio JN, Dement WC. Ontogenetic development of the human sleep-dream cycle. Science. 1966;152:604–19.

    Article  CAS  PubMed  Google Scholar 

  92. Garcia-Rill E, Luster B, Mahaffey S, MacNicol M, Hyde JR, D’Onofrio S, et al. Pedunculopontine gamma band activity and development. Brain Sci. 2015;5:546–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schenck CH, Garcia-Rill E, Skinner RD, Anderson M, Mahowald MW. A case of REM sleep behavior disorder with autopsy-confirmed Alzheimer’s Disease: post mortem brainstem histochemical analyses. Biol Psychiatry. 1996;40:422–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIGMS IDeA program award P30 GM110702. We appreciate the work of S. Mahaffey in making the figures for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Garcia-Rill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia-Rill, E., Schenck, C.H. (2019). Physiological Substrates of RBD Subtypes. In: Schenck, C., Högl, B., Videnovic, A. (eds) Rapid-Eye-Movement Sleep Behavior Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-90152-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90152-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90151-0

  • Online ISBN: 978-3-319-90152-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics