Skip to main content

Advertisement

Log in

Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: their prenatal origin, postnatal persistence during sleep, and pathological reemergence during REM sleep behavior disorder

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

An overview is presented of the literature dealing with sleep-like motility and concomitant neuronal activity patterns throughout the life cycle in vertebrates, ectothermic as well as endothermic. Spontaneous, periodically modulated, neurogenic bursts of non-purposive movements are a universal feature of larval and prenatal behavior, which in endothermic animals (i.e. birds and mammals) continue to occur periodically throughout life. Since the entire body musculature is involved in ever-shifting combinations, it is proposed that these spontaneously active periods be designated as ‘rapid-BODY-movement’ (RBM) sleep. The term ‘rapid-EYE-movement (REM) sleep’, characterized by attenuated muscle contractions and reduced tonus, can then be reserved for sleep at later stages of development. Mature stages of development in which sustained muscle atonia is combined with ‘paradoxical arousal’ of cortical neuronal firing patterns indisputably represent the evolutionarily most recent aspect of REM sleep, but more research with ectothermic vertebrates, such as fish, amphibians and reptiles, is needed before it can be concluded (as many prematurely have) that RBM is absent in these species. Evidence suggests a link between RBM sleep in early development and the clinical condition known as ‘REM sleep behavior disorder (RBD)’, which is characterized by the resurgence of periodic bouts of quasi-fetal motility that closely resemble RBM sleep. Early developmental neuromotor risk factors for RBD in humans also point to a relationship between RBM sleep and RBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corner MA, van der Togt C. No phylogeny without ontogeny–a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms. Neurosci Bull 2012, 28: 25–38.

    Article  PubMed  Google Scholar 

  2. Siegel J. Do all animals sleep? Trends Neurosci 2008, 31: 208–213.

    Article  CAS  PubMed  Google Scholar 

  3. Corner MA. Sleep and the beginnings of behavior in the animal kingdom. Prog Neurobiol 1977, 8: 279–295.

    Article  CAS  PubMed  Google Scholar 

  4. Corner MA. Call it sleep–what animals without backbones can tell us about the phylogeny of intrinsically generated neuromotor rhythms during early development. Neurosci Bull 2013, 29: 373–380.

    Article  PubMed  Google Scholar 

  5. Jouvet M. The Paradox of Sleep. Cambridge (MA): MIT Press, 1992.

    Google Scholar 

  6. Jouvet M. Paradoxical sleep–a study of its nature and mechanisms. Prog Brain Res 1965, 18: 20–57.

    Article  CAS  PubMed  Google Scholar 

  7. Fuller PM, Saper CB, Lu J. The pontine REM switch: past and present. J Physiol (London) 2007, 584: 735–741.

    Article  CAS  Google Scholar 

  8. Siegel JM. Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD. Monotremes and the evolution of rapid eye movement sleep. Phil Trans Roy Soc Lond (B) 1998, 353: 1147–1157.

    Article  CAS  Google Scholar 

  9. Lesku JA, Meyer LCR, Fuller A, Malloney SK, Dell’ Omo G, Vyssotsky AL, Rattenborg NC. Ostriches sleep like platypuses. PLoS One 2011, 6: e23203.

    Article  Google Scholar 

  10. Corner MA. Ontogeny of brain sleep mechanisms. In: Brain Mechanisms of Sleep (McGinty DJ et al, eds. ) 1985. Raven Press, New York, NY: pp. 175–192.

    Google Scholar 

  11. Roberts A. 2000. Early functional organisation of spinal neurons in developing lower vertebrates. Brain Res Bull 2000, 53:585–93

    CAS  PubMed  Google Scholar 

  12. Dickenson P. Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr Opin Neurobiol 2006, 16: 1–11.

    Article  Google Scholar 

  13. Chow HM, Horovitz SG, Carr WS, Picchioni D, Coddington N, Fukunaga M, et al. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A 2013, 110: 10300–10308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rattenborg NC, Martinez-Gonzalez D, Lesku JA. Avian sleep homeostasis: convergenent evolution of complex brains, cognition and sleep functions in mammals and birds. Neurosci Biobehav Rev 2009, 33: 253–270.

    Article  PubMed  Google Scholar 

  15. Corner MA. From neural plate to cortical arousal–a neuronal network theory of sleep derived from in vitro “model” systems for primordial patterns of spontaneous bioelectric activity in the vertebrate central nervous system Brain Sci 2013, 3: 800–820.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Krueger JM, et al. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 2008, 9: 910–919.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Krueger JM, Huang, JH, Rector, DM, Buysso, DH. Sleep: a synchrony of cell activity-driven small network states. Eur J Neurosci 2013, 38: 2199–2209.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hamburger V. Some aspects of the embryology of behavior. Quart Rev Biol 1963, 38: 342–365.

    Article  CAS  PubMed  Google Scholar 

  19. Robinson SR, Smotherman WP. Fundamental motor patterns of the mammalian fetus. J Neurobiol 1992, 23: 1574–1600.

    Article  CAS  PubMed  Google Scholar 

  20. Hamburger V, Wenger E, Oppenheim RW. Motility in the chick embryo in the absence of sensory input. J Exp Zool 1966, 162: 133–160.

    Article  Google Scholar 

  21. Corner MA, Crain SM. Spontaneous contractions and bioelectric activity after differentiation in culture of presumptive neuromuscular tissues of the early frog embryo. Experientia 1965, 21: 422–428.

    Article  CAS  PubMed  Google Scholar 

  22. Corner MA, Crain SM. Patterns of spontaneous bioelectric activity during maturation in culture of fetal rodent medulla and spinal cord tissues. J Neurobiol 1972, 3: 25–45.

    Article  CAS  PubMed  Google Scholar 

  23. Mahowald MW, Schenck CH. Evolving concepts of human state dissociation. Arch Ital Biol 2001, 139: 269–300.

    CAS  PubMed  Google Scholar 

  24. Bekoff A, Stein PSG, Hamburger, V. Coordinated motor output in the hind limb of the 7-day chick embryo. Proc Natl Acad Sci U S A 1975, 72: 1245–1248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Suzue T, Shinoda Y. Highly reproducible spatiotemporal patterns of mammalian embryonic movements at the developmental stage of the earliest spontaneous motility. Eur J Neurosci 1999, 11: 2697–2710.

    Article  CAS  PubMed  Google Scholar 

  26. Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 1998, 37: 622–632.

    Article  CAS  PubMed  Google Scholar 

  27. Schenck CH, Mahowald MW. REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep 2002, 25: 120–138.

    PubMed  Google Scholar 

  28. Fortin G, Kato F. Lumsden A, Champagnat J. Rhythm generation in the segmented hindbrain of chick embryos. J Physiol (London) 1995, 486: 735–744.

    Article  CAS  Google Scholar 

  29. Blumberg MS, Seelke AMH. The form and function of infant sleep. From muscle to neocortex In: Blumberg M, Freeman J and Robinson S (Eds.). The Oxford Handbook of Developmental Behavioral Neuroscience. New York, NY: Oxford University Press, 2010. 391–423.

    Google Scholar 

  30. Balaban E, Desco M, Vaquero JJ. Waking-like brain function in embryos. Curr Biol 2012, 22: 852–861.

    Article  CAS  PubMed  Google Scholar 

  31. Corner MA. Rhythmicity in the early swimming of anuran larvae. J Embryol Exp Morphol 1964, 12: 665–671.

    CAS  PubMed  Google Scholar 

  32. Corner MA, Bot HPC. Somatic motility during the embryonic period in birds, and its relation to behavior after hatching. Prog Brain Res 1967, 26: 214–236.

    Article  CAS  PubMed  Google Scholar 

  33. Seelke AMH, Karlsson KA, Gall AJ, Blumberg MS. Extraocular muscle activity, rapid eye movements and the development of active and quiet sleep. Eur J Neurosci 2005, 22: 911–920.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Thurber A, Jha SK, Coleman T, Frank MG. A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo). Behav Brain Res 2008, 189: 41–51.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Dreyfus-Brisac C. Ontogenesis of sleep in human prematures after 32 weeks of conceptional age. Dev Psychobiol 1970, 3: 91–121.

    Article  CAS  PubMed  Google Scholar 

  36. Romanini C, Rizzo G. Fetal behaviour in normal and compromised fetuses. An overview. Early Hum Dev 1995, 43: 117–31.

    Article  CAS  PubMed  Google Scholar 

  37. Branchereau P, Morin D, Bonnot A, Ballion B, Chapron J, Viala D. Development of lumbar rhythmic networks: from embryonic to neonatal locomotor-like patterns in the mouse. Brain Res Bull 2000, 53: 711–718.

    Article  CAS  PubMed  Google Scholar 

  38. Tassinari CA, Rubboli G, Gardella E, et al. Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias. A neuroethologic approach. Neurol Sci 2005, 26: s225–s232.

    Article  PubMed  Google Scholar 

  39. Decker JD, Hamburger V. The influence of different brain regions on periodic motility of the chick embryo. J Exp Zool 1967, 165: 371–383.

    Article  CAS  PubMed  Google Scholar 

  40. Ren J, Greer JJ. Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord. J Neurophysiol 2003, 89: 1182–1195.

    Google Scholar 

  41. Hughes SM, Easton CR, Bosma MM. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain. Dev Neurobiol 2009, 69: 477–490.

    Article  CAS  PubMed  Google Scholar 

  42. Momose-Sato K, Sato K. Large-scale synchronized activity in the embryonic brainstem and spinal cord. Front Cell Neurosci 2013, 7: 36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Prechtl HFR. The behavioral states of the newborn. Brain Res 1974, 76: 185–212.

    Article  CAS  PubMed  Google Scholar 

  44. Lesku JA, Martinez-Gonzalez D, Rattenborg NC. Sleep and sleep states: phylogeny and ontogeny. In: Squire LR (ed.). Encyclopedia Neuroscience. Oxford: Academic Press 2009: 963–971.

    Google Scholar 

  45. Luppi PH, Clement O, Sapin E, Gervasoni D, Peyron C, Leger L, et al. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med Rev 2011, 15: 153–163.

    Article  PubMed  Google Scholar 

  46. Provine RR. Embryonic spinal cord: synchrony and spatial distribution of polyneuronal burst discharges. Brain Res 1971, 29: 155–158.

    Article  CAS  PubMed  Google Scholar 

  47. Rosato-Siri M, Zoccolan D, Furlan F, Ballerini L. Interneurone bursts are spontaneously associated with muscle contractions only during early phases of mouse spinal network development: A study in organotypic cultures. Eur J Neurosci 2004, 20: 2697–2710.

    Article  PubMed  Google Scholar 

  48. Corner MA, Mirmiran M. Arousal episodes during sleep in the neonatal rat. Neurosci Lett 1983, 42: 45–48.

    Article  CAS  PubMed  Google Scholar 

  49. McVea DA, Mohajerani MH, Murphy TH. Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat. J Neurosci 2012, 32: 10982–10994.

    Article  CAS  PubMed  Google Scholar 

  50. Mohns EJ, Blumberg MS. Neocortical activation of the hippocampus during sleep in infant rats. J Neurosci 2010, 30: 3438–3449.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Blumberg MS, Lucas DE. A developmental and component analysis of active sleep. Dev Psychobiol 1996, 29: 1–22.

    Article  CAS  PubMed  Google Scholar 

  52. Shaffery JP, Roffwarg H. The ontogenetic hypothesis of rapid eye movement sleep function revisited. In: Frank MG (ed.). Current Advances in Sleep Biology. Hauppauge, NY: Nova Science, 2009. 177–216.

    Google Scholar 

  53. Tinbergen N. A Study of Instinct. 1950, Oxford (UK): Oxford University Press.

    Google Scholar 

  54. Meinertzhagen IA, Lemaire P, Okamura Y. The neurobiology of the ascidian tadpole larva: recent developments in an ancient chordate. Annu Rev Neurosci 2004, 27: 453–485.

    Article  CAS  PubMed  Google Scholar 

  55. Brown ER, Nishino A, Bone Q, Meinertzhagen IA, Okamura Y. GABAergic synaptic transmission modulates swimming in the ascidian larva. Eur J Neurosci 2005, 22: 2541–2548.

    Article  CAS  PubMed  Google Scholar 

  56. Erwin D, Valentine JW. The Cambrian Explosion–the Construction of Animal Diversity. 2013, Roberts & Company, Greenwood Village, Colorado (USA), 406 pp.

    Google Scholar 

  57. Corner MA. Postnatal persistence of episodic spontaneous rapid-body-movement bursts and twitches in the cuttlefish, Sepia officinalis. Behaviour 2013, 150: 939–950.

    Google Scholar 

  58. Frank MG, Waldrop RH, Dumoulin M, Aton S, Boal J. (2012). A preliminary analysis of sleep-like states in the cuttlefish Sepia officinalis. PLOS One 7: e38125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Karlsson K, Blumberg MS. Active medullary control of atonia in week-old rats. Neuroscience 2005, 130: 275–283.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Frank MG, Heller HC. The ontogeny of mammalian sleep: a reappraisal of alternative hypotheses. J Sleep Res 2003, 12: 25–34.

    Article  PubMed  Google Scholar 

  61. Corner MA, Kwee, P. Cyclic EEG and motility patterns during sleep in restrained infant rats. Electroenceph Clin Neurophysiol 1976, 41: 64–72.

    Article  CAS  PubMed  Google Scholar 

  62. Baker RE, Corner MA, van Pelt J. Spontaneous firing patterns in sagittal ‘mega’ slices of cerebral neocortex. Brain Res 2006, 1101: 29–35.

    Article  CAS  PubMed  Google Scholar 

  63. Canepari M, Bove M, Maeda E, Capello M, Kawana A. Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biol Cyber 1997, 72: 153–162.

    Article  Google Scholar 

  64. Lemieux M, Chen JY, Lonjers P, Bashenov, M, Timofeev I. The impact of cortical deafferentation on the neocortical slow oscillation. J Neurosci 2014, 34: 5689–5703.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH. Physiological effects of sustained blockade of spontaneously active developing neural networks–an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobeh Rev 2002, 26: 127–185.

    Article  CAS  Google Scholar 

  66. Corner MA, Ramakers GJ. Spontaneous firing as an epigenetic factor in brain development—physiological consequences of chronic tetrodotoxin and picrotoxin exposure on cultured rat neocortex neurons. Dev Brain Res 1992, 65: 57–64.

    Article  CAS  Google Scholar 

  67. Chen X, Dzakpasu R. Observed network dynamics from altering the balance between excitatory and inhibitory neurons in cultured networks. Physical Rev 2010 82(3 Pt 1): 031907.

    Google Scholar 

  68. Corner MA, Baker RE, van Pelt J, Wolters PS. Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro. Prog Brain Res 2005;147: 231–248.

    Article  CAS  PubMed  Google Scholar 

  69. Kaufman M, Reinartz S, Ziv NE. Adaptation to prolonged neuromodulation in cortical cultures: an invariable return to network synchrony. BMC Biol 2014, 12: 83.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Kilb W, Kirischuk S, Luhmann HJ. Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci 2011, 34: 1677–1686.

    Article  PubMed  Google Scholar 

  71. Blumberg MS. Beyond dreams: do sleep-related movements contribute to brain development? Front Neurol 2010, 1: 140.

    PubMed Central  PubMed  Google Scholar 

  72. Mirmiran M, van de Poll NE, Corner, MA, van Ooyen HG, Bour HL. Suppression of active sleep by chronic treatment with clomipramine during early postnatal development: effects upon adult sleep and behavior in the rat. Brain Res 1981, 204: 129–146.

    Article  CAS  PubMed  Google Scholar 

  73. Seelke AMH, Blumberg MS. The microstructure of active and quiet sleep as cortical delta activity emerges in infant rats. Sleep 2008, 31: 891–899.

    Google Scholar 

  74. Fortin G, Jungbluth S, Lumsden A, Champagnat J. Segmental specification of GABAergic inhibition during development of hindbrain neural networks. Nat Neurosci 1999, 2: 873–877.

    Article  CAS  PubMed  Google Scholar 

  75. Brooks PL, Peever JH. Impaired GABA and glycine transmission triggers cardinal features of rapid eye movement sleep behavior disorder in mice. J Neurosci 2011, 31: 7111–7121.

    Article  CAS  PubMed  Google Scholar 

  76. Brooks PL, Peever JH. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci 2012, 32: 9785–9795.

    Article  CAS  PubMed  Google Scholar 

  77. Luppi et al. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflueger’s Arch/Eur J Physiol 2012, 463: 43–52.

    Article  CAS  Google Scholar 

  78. Morrison A. A window on the sleeping brain. Sci Amer 1983, 248: 94–102.

    Article  CAS  PubMed  Google Scholar 

  79. Mirmiran M. ‘Oneiric’ behavior during active sleep induced by bilateral lesions of the pontine tegmentum in juvenile rats. In: Koella WP (Ed). Sleep: Sixth European Congress of Sleep Research. Basel: Karger, 1982. 236–239.

    Google Scholar 

  80. Corner MA, Partiman T, Mirmiran M, Bour HL. Effects of pontine lesions on brainstem polyneuronal activity during sleep in infant rats. Exp Neurol 1984, 4: 489–493.

    Article  Google Scholar 

  81. Huisjes H. Problems in studying functional teratogenicity in man. Prog Brain Res 1988, 73: 51–58.

    Article  CAS  PubMed  Google Scholar 

  82. Champagnat J, Thoby-Brisson M, Fortin G. Genetic factors determining the functional organization of neural circuits controlling rhythmic movements. Prog Brain Res 2010, 187, 39–46.

    Google Scholar 

  83. Sheldon SH, Jacobsen J. REM-sleep motor disorder in children. J Child Neurol 1998, 13: 257–260.

    Article  CAS  PubMed  Google Scholar 

  84. Yeh SB, Schenck CH. A case of marital discord and secondary depression with attempted suicide resulting from REM Sleep Behavior Disorder in a 35 year-old woman. Sleep Med 2004, 5: 151–154.

    Article  PubMed  Google Scholar 

  85. Schenck CH, Hurwitz TD, Mahowald MW. REM sleep behavior disorder: an update on a series of 96 patients and a review of the world literature. J Sleep Res 1993, 2: 224–231.

    Article  PubMed  Google Scholar 

  86. Schenck CH, Boyd JL, Mahowald MW. A parasomnia overlap disorder involving sleepwalking, sleep terrors, and REM sleep behavior disorder in 33 polysomnographically —confirmed cases. Sleep 1997, 20: 972–981.

    CAS  PubMed  Google Scholar 

  87. Bonakis A, Howard RS, Ebrahim IO, Merritt S, Williams A. REM sleep behaviour disorder and its associations in young patients. Sleep Med 2009, 10: 641–645.

    Article  PubMed  Google Scholar 

  88. Oudiette D, Leu-Semenescu S, Roze E, Vidailhet M, de Cock VC, Golmard JL, et al. A motor signature of REM sleep behavior disorder. Mov Disord 2012, 27: 428–431.

    Article  PubMed  Google Scholar 

  89. Frauscher B, Gschliesser V, Brandauer E, Ulmer H, Peralta CM, Müller J, et al. Video analysis of motor events in REM sleep behavior disorder. Mov Disord 2007, 22: 1464–1470.

    Article  PubMed  Google Scholar 

  90. Frauscher B, Gschliesser V, Brandauer E, Ulmer H, Poewe W, Högl B. The relation between abnormal behaviors and REM sleep microstructure in patients with REM sleep behavior disorder. Sleep Med 2009, 10: 174–181.

    Article  PubMed  Google Scholar 

  91. Mahowald MW, Schenck CH. Insights from studying human sleep disorders. Nature 2005, 437: 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  92. Mahowald MW, Cramer Bornemann MA, Schenck CH. State dissociation, human behavior and consciousness. Curr Top Med Chem 2011, 11: 2392–2402.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Schenck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corner, M.A., Schenck, C.H. Perchance to dream? Primordial motor activity patterns in vertebrates from fish to mammals: their prenatal origin, postnatal persistence during sleep, and pathological reemergence during REM sleep behavior disorder. Neurosci. Bull. 31, 649–662 (2015). https://doi.org/10.1007/s12264-015-1557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1557-1

Keywords

Navigation