Skip to main content

Additive Manufacturing of Orthopedic Implants

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

Additive Manufacturing (AM) is the process of selectively joining materials to fabricate objects in a layer-by-layer approach using digital part information, i.e. 3D CAD models. This definition highlights the fundamental difference between AM process and traditional manufacturing methods such as subtractive processes (e.g. machining), forming processes (e.g. forging) and bulk solidification processes (e.g. casting). AM is often also called 3D printing, additive processes, freeform fabrication and layered manufacturing. When compared to traditional processes, AM offers unique advantages to economically produce low volume batches (one to a few) of highly complex products. Since AM does not require design and/or material dependent tooling (e.g. jigs and fixtures), AM is an ideal candidate for the next generation design and manufacturing of orthopedic implants. Although “customization” of product specifications implants has been around long before the introduction of AM technology to the medical field, the lack of tooling requirement for each design in AM makes it economically viable for patient-specific orthopedic implant production. Finally, design freedom that can be easily achieved through AM technology enables introduction of porous structures for bone ingrowth and biological implant fixation. The motivation for this chapter is to understand the current state of orthopedic applications of AM which have been shown to economically produce highly customized and highly complex design features in low volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett DWF. Partial custom knee replacement in Sarasota, Florida. 2014. [Online]. http://www.bennettorthosportsmed.com/custom-knee-replacement/.

  2. Manogharan G. Hybrid manufacturing: analysis of integrating additive and subtractive methods. Raleigh, NC: North Carolina State University; 2014.

    Google Scholar 

  3. Gibson I, Rosen D, Stucker B. Additive manufacturing technologies. New York: Springer; 2010.

    Book  Google Scholar 

  4. Almaghariz ES, Conner BP, Lenner L, Gullapalli R, Manogharan GP, Lamoncha B, Fang M. Quantifying the role of part design complexity in using 3d sand printing for molds and cores. Int J Met. 2016;10:240.

    Google Scholar 

  5. Winkel A, Meszaros R, Reinsch S, Müller R, Travitzky N, Fey T, Greil P, Wondraczek L. Sintering of 3D-printed glass/HAp composites. J Am Ceram Soc. 2012;95:3387.

    Article  CAS  Google Scholar 

  6. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30:2563.

    Article  CAS  Google Scholar 

  7. Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017;45:23.

    Article  PubMed  Google Scholar 

  8. Taminger, KMB, Hafley RA. Electron beam freeform fabrication: a rapid metal deposition process. Proceedings of the 3rd annual automotive composites conference. 2003;9:10.

    Google Scholar 

  9. Brandl E, Baufeld B, Leyens C, Gault R. Additive manufactured Ti-6A1-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Procedia. 2010;5:595–606.

    Article  CAS  Google Scholar 

  10. Acharya R, Bansal R, Gambone JJ, Kaplan MA, Fuchs GE, Rudawski NG, Das S. Additive manufacturing and characterization of René 80 Superalloy processed through scanning laser epitaxy for turbine engine hot-section component repair. Adv Eng Mater. 2015;17:942.

    Article  CAS  Google Scholar 

  11. Carroll BE, Otis RA, Borgonia JP, Suh JO, Dillon RP, Shapiro AA, Hofmann DC, Liu ZK, Beese AM. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling. Acta Mater. 2016;108:46.

    Article  CAS  Google Scholar 

  12. Bobbio LD, Otis RA, Borgonia JP, Dillon RP, Shapiro AA, Liu ZK, Beese AM. Additive manufacturing of a functionally graded material from Ti-6Al-4V to invar: experimental characterization and thermodynamic calculations. Acta Mater. 2017;127:133.

    Article  CAS  Google Scholar 

  13. Karunakaran KP, Suryakumar S, Pushpa V, Akula S. Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot Comput Integr Manuf. 2010;26:490.

    Article  Google Scholar 

  14. Flynn JM, Shokrani A, Newman ST, Dhokia V. Hybrid additive and subtractive machine tools - research and industrial developments. Int J Mach Tools Manuf. 2016;101:79.

    Article  Google Scholar 

  15. Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3(3):249–59.

    Article  PubMed  Google Scholar 

  16. Sochalski-Kolbus LM, Payzant EA, Cornwell PA, Watkins TR, Babu SS, Dehoff RR, Lorenz M, Ovchinnikova O, Duty C. Comparison of residual stresses in Inconel 718 simple parts made by Electron beam melting and direct laser metal sintering. Metall Mater Trans A Phys Metall Mater Sci. 2015;46:1419–32.

    Article  CAS  Google Scholar 

  17. Townsend A, Senin N, Blunt L, Leach RK, Taylor JS. Surface texture metrology for metal additive manufacturing: a review. Precis. Eng. 2016;46:34–47.

    Article  Google Scholar 

  18. Song B, Dong S, Liu Q, Liao H, Coddet C. Vacuum heat treatment of iron parts produced by selective laser melting: microstructure, residual stress and tensile behavior. Mater Des. 2014;54:727.

    Article  CAS  Google Scholar 

  19. Wu AS, Brown DW, Kumar M, Gallegos GF, King WE. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall Mater Trans A: Phys Metall Mater Sci. 2014;45:6260.

    Article  CAS  Google Scholar 

  20. Vaezi M, Yang S. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyping. 2015;10:123.

    Article  Google Scholar 

  21. Baich L, Manogharan G, Marie H. Study of infill print design on production cost-time of 3D printed ABS parts. Int J Rapid Manufact. 2015;5:308–19.

    Article  Google Scholar 

  22. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312.

    Article  CAS  Google Scholar 

  23. Scheithauer U, Schwarzer E, Richter HJ, Moritz T. Thermoplastic 3D printing—an additive manufacturing method for producing dense ceramics. Int J Appl Ceram Technol. 2015;12:26.

    Article  CAS  Google Scholar 

  24. Wu GH, Hsu SH. Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng. 2015;35:285.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897.

    Article  CAS  PubMed  Google Scholar 

  26. Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int J Biomater. 2012;2012:1.

    Article  CAS  Google Scholar 

  27. Campoli G, Borleffs MS, Amin YS, Wauthle R, Weinans H, Zadpoor AA. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des. 2013;49:975–65.

    Article  CAS  Google Scholar 

  28. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41.

    Article  CAS  PubMed  Google Scholar 

  29. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. New York: Academic Press; 2004.

    Google Scholar 

  30. Park J, Lakes RD. Biomaterials: an introduction. New York: Springer Science & Business Media; 2007.

    Google Scholar 

  31. Özel T, Bártolo PJ, Ceretti E, Gay JC, Rodriguez CA, Da Silva JVL, editors. Biomedical devices: design, prototyping, and manufacturing. New York: Wiley; 2016.

    Google Scholar 

  32. Simon JP, Fabry G. An overview of implant materials. Acta Orthop Belg. 1991;57(1):1–5.

    PubMed  CAS  Google Scholar 

  33. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  34. Zhong Y, Liu L, Wikman S, Cui D, Shen Z. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater. 2016;470:170.

    Article  CAS  Google Scholar 

  35. Zhong Y, Rännar L-E, Liu L, Koptyug A, Wikman S, Olsen J, Cui D, Shen Z. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J Nucl Mater. 2017;486:234.

    Article  CAS  Google Scholar 

  36. Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A. 2016;651(0921–5093):198–213.

    Article  CAS  Google Scholar 

  37. Gaytan SM, Murr LE, Martinez E, Martinez JL, MacHado BI, Ramirez DA, Medina F, Collins S, Wicker RB. Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall Mater Trans A Phys Metall Mater Sci. 2010;41:3216–27.

    Article  CAS  Google Scholar 

  38. Kim HR, Jang SH, Kim YK, Son JS, Min BK, Kim KH, Kwon TY. Microstructures and mechanical properties of Co-Cr dental alloys fabricated by three CAD/CAM-based processing techniques. Materials. 2016;9:596.

    Article  CAS  PubMed Central  Google Scholar 

  39. Murr LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2:20–32.

    Article  CAS  PubMed  Google Scholar 

  40. Niinomi M, Narushima T, Nakai M, editors. Advances in metallic biomaterials processing and applications. Berlin: Springer; 2015.

    Google Scholar 

  41. Okazaki Y, Rao S, Ito Y, Tateishi T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials. 1998;19:1197–215.

    Article  CAS  PubMed  Google Scholar 

  42. Sing SL, Yeong WY, Wiria FE. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloys Compd. 2016;660:461.

    Article  CAS  Google Scholar 

  43. Wauthle R, Van Der Stok J, Yavari SA, Van Humbeeck J, Kruth JP, Zadpoor AA, Weinans H, Mulier M, Schrooten J. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217.

    Article  CAS  PubMed  Google Scholar 

  44. Vasilescu C, Drob S, Neacsu E, Rosca JM. Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids. Corros Sci. 2012;65:431–40.

    Article  CAS  Google Scholar 

  45. Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253.

    Article  CAS  PubMed  Google Scholar 

  46. Wauthle R, Kruth J-P, Montero ML, Thijs L, Van Humbeeck J. New opportunities for using tantalum for implants with additive manufacturing. Eur Cells Mater. 2013;26:15.

    Article  Google Scholar 

  47. Kurtz SM. PEEK biomaterials handbook. Oxford: William Andrew; 2011.

    Google Scholar 

  48. Campbell AA. Bioceramics for implant coatings. Mater Today. 2003;6:26–30.

    Article  CAS  Google Scholar 

  49. Bartolo P, Kruth JP, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M. Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol. 2012;61:635.

    Article  Google Scholar 

  50. Mahmoud D, Elbestawi M. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review. J Manufact Mater Process. 2017;1:13.

    Google Scholar 

  51. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C. 2016;59:690–701.

    Article  CAS  Google Scholar 

  52. Čapek J, Machová M, Fousová M, Kubásek J, Vojtěch D, Fojt J, Jablonská E, Lipov J, Ruml T. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater Sci Eng C. 2016;69:631.

    Article  CAS  Google Scholar 

  53. Lima DD, Mantri SA, Mikler CV, Contieri R, Yannetta CJ, Campo KN, Lopes ES, Styles MJ, Borkar T, Caram R, Banerjee R. Laser additive processing of a functionally graded internal fracture fixation plate. Mater Des. 2017;130:8.

    Article  CAS  Google Scholar 

  54. Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, Kruth JP, Schrooten J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012;8(7):2824–34.

    Article  CAS  PubMed  Google Scholar 

  55. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36.

    Article  CAS  PubMed  Google Scholar 

  56. Challis VJ, Roberts AP, Grotowski JF, Zhang LC, Sercombe TB. Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication. Adv Eng Mater. 2010;12:1106.

    Article  CAS  Google Scholar 

  57. Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med Biol Eng Comput. 2016;54:1123.

    Article  PubMed  Google Scholar 

  58. Al-Tamimi AA, PRA F, Peach C, Cooper G, Diver C, Bartolo PJ. Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Virtual Phys Prototyping. 2017;12(2):141–51.

    Article  Google Scholar 

  59. Marro A, Bandukwala T, Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol. 2016;45:2–9.

    Article  PubMed  Google Scholar 

  60. Iglesias A, Galvez A, Avila A. Immunological approach for full NURBS reconstruction of outline curves from noisy data points in medical imaging. IEEE/ACM Trans Comput Biol Bioinform. 2017.

    Google Scholar 

  61. Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, Cohen RC, Westendorf JJ, Lewallen DG, van Wijnen AJ. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev. 2015;21:218.

    Article  PubMed  Google Scholar 

  62. Chahine G, Koike M, Okabe T, Smith P, Kovacevic R. The design and production of Ti-6Al-4V ELI customized dental implants. JOM. 2008;60:50.

    Article  CAS  Google Scholar 

  63. Ellingsen JE, Lyngstadaas SP. Bio-implant interface: improving biomaterials and tissue reactions. Boca Raton, FL: CRC; 2003.

    Book  Google Scholar 

  64. Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS. The anatomic basis of femoral component design. Clin Orthop Relat Res. 1988;235(11):148–65.

    Google Scholar 

  65. Duda GN, Brand D, Freitag S, Lierse W, Schneider E. Variability of femoral muscle attachments. J Biomech. 1996;29(9):1185–90.

    Article  CAS  PubMed  Google Scholar 

  66. Churchill RS, Brems JJ, Kotschi H. Glenoid size, inclination, and version: an anatomic study. J Shoulder Elbow Surg. 2001;10(4):327–32.

    Article  CAS  PubMed  Google Scholar 

  67. Matsumura N, Ogawa K, Ikegami H, Collin P, Walch G, Toyama Y. Computed tomography measurement of glenoid vault version as an alternative measuring method for glenoid version. J Orthop Surg Res. 2014;9:17.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Boudarham J, Hameau S, Zory R, Hardy A, Bensmail D, Roche N. Coactivation of lower limb muscles during gait in patients with multiple sclerosis. PLoS One. 2016;11:e0158267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim SH, Wise BL, Zhang Y, Szabo RM. Increasing incidence of shoulder arthroplasty in the United States. J Bone Joint Surg Am. 2011;93(24):249–2254.

    Article  Google Scholar 

  70. Habermeyer P, Magosch P, Luz V, Lichtenberg S. Three-dimensional glenoid deformity in patients with osteoarthritis: a radiographic analysis. J Bone Joint Surg Am. 2006;88(6):1301–7.

    PubMed  CAS  Google Scholar 

  71. Nowak DD, Bahu MJ, Gardner TR, Dyrszka MD, Levine WN, Bigliani LU, Ahmad CS. Simulation of surgical glenoid resurfacing using three-dimensional computed tomography of the arthritic glenohumeral joint: the amount of glenoid retroversion that can be corrected. J Shoulder Elbow Surg. 2009;18(5):680–8.

    Article  PubMed  Google Scholar 

  72. Dines DM, Gulotta L, Craig EV, Dines JS. Novel solution for massive glenoid defects in shoulder arthroplasty: a patient-specific glenoid vault reconstruction system. Am J Orthop (Belle Mead NJ). 2017;46(2):104.

    Google Scholar 

  73. Flurin PH, Janout M, Roche CP, Wright TW, Zuckerman J. Revision of the loose glenoid component in anatomic total shoulder arthroplasty. Bull NYU Hosp Jt Dis. 2013;71:68–76.

    Google Scholar 

  74. Hsu JE, Gee AO, Lucas RM, Somerson JS, Warme WJ, Matsen FA. Management of intraoperative posterior decentering in shoulder arthroplasty using anteriorly eccentric humeral head components. J Shoulder Elb Surg. 2016;25:1980.

    Article  Google Scholar 

  75. Lewis GS, Conaway WK, Wee H, Kim HM. Effects of anterior offsetting of humeral head component in posteriorly unstable total shoulder arthroplasty: finite element modeling of cadaver specimens. J Biomech. 2017;53:78.

    Article  PubMed  Google Scholar 

  76. Anderson DD, Mosqueda T, Thomas T, Hermanson EL, Brown TD, Marsh JL. Quantifying tibial plafond fracture severity: absorbed energy and fragment displacement agree with clinical rank ordering. J Orthop Res. 2008;26:1046.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Egol KA, Chang EY, Cvitkovic J, Kummer FJ, Koval KJ. Mismatch of current intramedullary nails with the anterior bow of the femur. J Orthop Trauma. 2004;18(7):410–5.

    Article  PubMed  Google Scholar 

  78. Haynes RC, Pöll RG, Miles AW, Weston RB. Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury. 1997;28:337.

    Article  CAS  PubMed  Google Scholar 

  79. Gardner MJ, Weil Y, Barker JU, Kelly BT, Helfet DL, Lorich DG. The importance of medial support in locked plating of proximal Humerus fractures. J Orthop Trauma. 2007;21:185–91.

    Article  PubMed  Google Scholar 

  80. Lewis GS, Caroom CT, Wee H, Jurgensmeier D, Rothermel SD, Bramer MA, Reid JS. Tangential bicortical locked fixation improves stability in Vancouver B1 periprosthetic femur fractures: a biomechanical study. J Orthop Trauma. 2015;29(10):364–70.

    Article  Google Scholar 

  81. Tidwell JE, Roush EP, Ondeck CL, Kunselman AR, Reid JS, Lewis GS. The biomechanical cost of variable angle locking screws. Injury. 2016;47(8):1624–30.

    Article  PubMed  Google Scholar 

  82. Tank JC, Schneider PS, Davis E, Galpin M, Prasarn ML, Choo AM, Munz JW, Achor TS, Kellam JF, Gary JL. Early mechanical failures of the synthes variable angle locking distal femur plate. J Orthop Trauma. 2016;30(1):e7–e11.

    Article  PubMed  Google Scholar 

  83. Cronskär M, Rännar L-E, Bäckström M, Nilsson KG, Samuelsson B. Patient-specific clavicle reconstruction using digital design and additive manufacturing. J Mech Des. 2015;137:111418.

    Article  Google Scholar 

  84. George M, Kevin Aroom BR, Harvey Hawes BG, Brijesh Gill BS, Love J. 3D printed surgical instruments: the design and fabrication process. World J Surg. 2017;41:314–9.

    Article  PubMed  Google Scholar 

  85. Takemoto M, Fujibayashi S, Ota E, Otsuki B, Kimura H, Sakamoto T, Kawai T, Futami T, Sasaki K, Matsushita T, Nakamura T, Neo M, Matsuda S. Additive-manufactured patient-specific titanium templates for thoracic pedicle screw placement: novel design with reduced contact area. Eur Spine J. 2016;25:1698.

    Article  PubMed  Google Scholar 

  86. Andersen RC, Nanos GP, Pinzur MS, Potter BK. Amputations in trauma. Skeletal trauma. 5th edition. Elsevier Saunders. 2015;2513–34.

    Google Scholar 

  87. Wong KC, Kumta SM, Geel NV, Demol J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015;20:14.

    Article  CAS  PubMed  Google Scholar 

  88. Sanders G, Marks S, Dicaprio M. The treatment of femoral bone tumor using 3-D printing techniques: a mechanical analysis. Transactions of the 2014 Orthopedics Research Society Meeting. 2014;1109.

    Google Scholar 

  89. Fan H, Fu J, Li X, Pei Y, Li X, Pei G, Guo Z. Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature. World J Surg Oncol. 2015;13:308.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bibb R, Eggbeer D, Evans P, Bocca A, Sugar A. Rapid manufacture of custom-fitting surgical guides. Rapid Prototyping J. 2009;15(4):346–54.

    Article  Google Scholar 

  91. Jardini AL, Larosa MA, Filho RM, Zavaglia CADC, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio-Maxillofac Surg. 2014;42:1877.

    Article  Google Scholar 

  92. Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, Yu M, Wu F, Liu Z. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine. 2016;41:E50–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge Dr. April D. Armstrong, Professor and Assistant Director from the Penn State Hershey Bone and Joint Institute. We also thank Evan Roush for his contribution in preparing the anatomical models and processing the DICOM data. We also acknowledge Conner Zale for his contribution in discussing large bone defects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guha P. Manogharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tilton, M., Lewis, G.S., Manogharan, G.P. (2018). Additive Manufacturing of Orthopedic Implants. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_2

Download citation

Publish with us

Policies and ethics