Skip to main content

Accelerated Wheat Breeding: Doubled Haploids and Rapid Generation Advance

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 1

Abstract

New breeding objectives, evolving disease organisms, changing climate patterns and the need for quick genetic ameliorations make accelerated breeding an important aspect of wheat improvement work. The emergence and deployment of wheat x maize system of DH production over the last few decades are discussed as an important option for accelerated wheat breeding. The lack of acute genotypic specificity favours the application of this method in wheat breeding. A low-cost, high-throughput system based on detached tiller culture and pre-regeneration chromosome doubling is presented. Recent studies in wheat have focused on development of alternative accelerated breeding systems based on modulation of growth environments and compression of crop cycle duration. Multiple crop generations obtained in this manner allow homozygosity to be approached in a single year. Directed assemblage of recurrent parent background and selection in nontarget environments have been enabled by use of molecular markers and complement accelerated breeding through these means. The future prospects of accelerated breeding are enriched by recent advances in deciphering molecular genetic basis e.g. CEN H3 and Mtl-1 genes of haploid induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amrani N, Sarrafi A, Alibert G (1993) Genetic variability for haploid production in crosses between tetraploid and hexaploid wheats with maize. Plant Breed 110:123–128

    Article  Google Scholar 

  • Amy W, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Ji Z, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants 4:23–29

    Article  Google Scholar 

  • Ayed S, Slama-Ayed O, da SJA T, Slim-Amara H (2011) Effect of different factors on haploid production through embryo rescue in durum wheat x maize crosses. Int J Plant Breed 5:118–121

    Google Scholar 

  • Bains NS, Singh J, Ravi, Gosal SS (1995) Production of wheat haploids through embryo rescue from wheat x maize crosses. Curr Sci 69:621–623

    Google Scholar 

  • Bains NS, Mangat GS, Singh K, Nanda GS (1998) A simple technique for the identification of embryo carrying seeds from wheat x maize crosses prior to dissection. Plant Breed 117:191–192

    Article  Google Scholar 

  • Bains N S, Singh J, Sharma A (2009). “Accelerated breeding of bread and durum wheat in response to emerging biotic and abiotic challenges” Annual Report submitted to Navajbai Ratan Tata Trust

    Google Scholar 

  • Barclay IR (1975) High frequency of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410–411

    Article  Google Scholar 

  • Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357. https://doi.org/10.3389/fpls.2016.00357

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell AW, Griffin WB, Burritt DJ, Conner AJ (2000) The effects of temperature and \ light intensity on embryo numbers in wheat doubled haploid production through wheat x maize rosses. N Z J Crop Hortic Sci 28:185–194

    Article  Google Scholar 

  • Carver B (2016) https://www.agweb.com/article/double-haploids-push-wheat-further-naa-dan-crummett

  • Chang MT, Coe E (2009) Doubled haploids. In: Kriz AL, Larkins BA (eds) Molecular genetics approaches to maize improvement. Springer, Heidelberg, pp 127–142

    Chapter  Google Scholar 

  • Chaudhary HK, Sethi GS, Singh S, Pratap A, Sharma S (2005) Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed 124:96–98

    Article  Google Scholar 

  • Chaudhary HK, Kaila V, Rather SA, Tayeng T (2014) Distant hybridisation and doubled-haploidy breeding. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants, vol Volume 1. Springer, New York

    Google Scholar 

  • Chawla HS (2002) Introduction to plant biotechnology, 2nd edn. Science Publishers Inc., Enfield

    Google Scholar 

  • Chen ZZ, Snyder S, Fan ZG, Loh WH (1994) Efficient production of doubled haploid plants through chromosome doubling of isolated microspores in Brassica napus. Plant Breed 113:217–221

    Article  Google Scholar 

  • Cherkaoui S, Lamsaouri O, Chlyah A, Chlyah H (2000) Durum wheat x maize crosses for haploid wheat production: influence of parental genotypes and various experimental factors. Plant Breed 119:31–36

    Article  Google Scholar 

  • Comeau A, Nadeau P, Plourde A, Simard R, Maes O, Kelly S, Harper L, Lettre J, Landry B, St-Pierre CA (1992) Media for in ovulo culture of proembryos of wheat and wheat-derived interspecific hybrids or haploids. Plant Sci 81:117–125

    Article  CAS  Google Scholar 

  • De Buyser J, Henry Y, Lonnet P, Hertzog R, Hespet A (1987) Florin: a doubled haploid wheat variety developed by the anther culture method. Plant Breed 98:53–56

    Article  Google Scholar 

  • De Pauw RM, Knox RE, Thomas JB, Humphreys DG, Fox SL, Brown PD, Singh AK, Randhawa HS, Hucl P, Pozniak C, Fowler DB, Graf RJ, Braule-Babel A (2010) New breeding tools impact Canadian commercial farmers fields. Proceedings of the 8th internal wheat conference. St. Petersburg, Russia

    Google Scholar 

  • Dhaliwal HS, Cheema GS, Sidhu JS (1995) Polyhaploid production in bread wheat using wheat x maize crosses. Crop Improv 22:7–10

    Google Scholar 

  • Dhooghe E, Van Laere K, Eechkaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104:359–373

    Article  Google Scholar 

  • Dogramaci-Altuntepe M, Jauhar PP (2001) Production of durum wheat substitution haploids from durum 9 maize crosses and their cytological characterization. Genome 44:137–142

    Article  CAS  PubMed  Google Scholar 

  • Donovan GR, Lee JW (1977) The growth of detached wheat heads in liquid culture. Plant Sci Lett 9:107–113

    Article  CAS  Google Scholar 

  • Dusautoir JC, Coumans M, Kaan F, Boutouchent BF (1995) Genotypic effect and histocytological events in relation to embryo formation after intergeneric crosses between durum wheat and maize and teosinte. J Genet Breed 49:353–358

    Google Scholar 

  • Falk DE, Kasha KJ (1981) Comparison of crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat (Triticum aestivum). Can J Genet Cytol 23:81–88

    Article  Google Scholar 

  • Forster BP, Haberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375. https://doi.org/10.1016/j.tplants.2007.06.007

    Article  PubMed  CAS  Google Scholar 

  • Forster BP, Till BJ, Ghanim AMA, Huynh HOA, Burstmayr H, Caligari PDS (2014) Accelerated plant breeding. Cab Rev 9:1–16. https://doi.org/10.1079/PAVSNNR20149043

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499. ISSN 0025-6153

    Google Scholar 

  • Gill Manpartik S (2017) Marker assisted consolidation of low polyphenol oxidase and rust resistance genes in high grain protein bread wheat lines. M.Sc. Thesis, Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J et al (2017) Loss of pollen-specific phospholipase not like dad triggers gynogenesis in maize. EMBO J 36:707–717. https://doi.org/10.15252/embj.201796603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goyal P (2016) Improving the efficiency of detached tiller culture and plant regeneration in wheat x maize system of doubled haploid production in wheat. PhD Dissertation. Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Graham JSD, Morton RK (1963) Studies of proteins of developing wheat endosperm: separation by starch-gel electrophoresis and incorporation of [35S]Sulphate. Aust J Biol Sci 16:355–365

    Google Scholar 

  • Graicia-Llamas C, Ramirez MC, Ballesteros J (2004) Effect of pollinator on haploid production in durum wheat crossed with maize and pearl millet. Plant Breed 123:201–203

    Article  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98

    Article  Google Scholar 

  • Haley SD, Johnson JJ, Peairs FB, Quick JS, Westra PH, Stromberger JA, Clayshulte SR, Clifford BL, Rudolph JB, Giura A, Seabourn BW, Chung OK, Jin E, Kolmer J (2006) Registration of ‘Bond CL’ wheat. Crop Sci 46:993–995

    Article  Google Scholar 

  • Hansen NJP, Andersen SB (1998) Efficient production of doubled haploid wheat plants by in vitro treatment of microspores with trifluralin or APM. Plant Breed 117:401–405

    Article  CAS  Google Scholar 

  • Hansen FL, Andersen SB, Due IK, Olesen A (1998) Nitrous oxide as a possible alternative agent for chromosome doubling of wheat haploids. Plant Sci 54:219–222

    Article  CAS  Google Scholar 

  • Hassawi DS, Liang GH (1991) Antimitotic agents: effects on doubled haploid production in wheat. Crop Sci 31:723–726

    Article  CAS  Google Scholar 

  • Huihui L, Singh R, Braun HJ, Pfeiffer W, Wang J (2013) Doubled haploids versus conventional breeding in CIMMYT wheat breeding programs. Crop Sci 53:74

    Article  Google Scholar 

  • Hussain B, Kha M, Ali Q, Shaukat S (2012) Double haploid production is the best method for genetic improvement and genetic studies of wheat. Int J Agro Vet Med Sci 6:216–228. https://doi.org/10.5455/ijavms.169

    Article  Google Scholar 

  • Inagaki MN (1997) Technical advances in wheat haploid production using ultra-wide crosses. JIRCAS J 4:51–62

    Google Scholar 

  • Inagaki MN, Hash CT (1998) Production of haploids in bread wheat, durum wheat and hexaploid triticale crossed with pearl millet. Plant Breed 117:485–487

    Article  Google Scholar 

  • Inagaki MN, Tahir M (1990) Comparison of haploid production frequencies in wheat varieties crossed with Hordeum bulbosum L. and maize. Jpn J Breed 40:209–216

    Article  Google Scholar 

  • Inagaki MN, Tahir M (1995) Comparison of crossabilities of tetraploid wheat with Hordeum bulbosum and maize. Cereal Res Commun 23:339–343

    Google Scholar 

  • Inagaki M, Mujeeb-Kazi A.( 1995) Comparison of polyhaploid production frequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Breeding Science 157–161

    Article  Google Scholar 

  • Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol l67:10.1–10.18

    Google Scholar 

  • Islam SM (2010) The effect of colchicine pretreatment on isolated microspore culture of wheat (Triticum aestivum L.) Aust J Crop Sci 4:660–665

    CAS  Google Scholar 

  • Jiang LN, Hou F, Hao BZ, Shao Y, Zhang DJ, Li CX (2008) Effect of Zn2+ on dry matter and zinc accumulation in wheat seedling. J Triticeae Crops 28(6):1005–1010

    CAS  Google Scholar 

  • Kammholz SJ, Sutherland MW, Banks PM (1996) Improving the efficiency of haploid wheat production mediated by wide crossing. SABRAO J 28:37–46

    Google Scholar 

  • Kansal M (2011) Marker assisted development of wheat lines resistant to stem rust race Ug99. M.Sc. Thesis, Punjab Agricultural University, Ludhiana, India

    Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.) Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Hiyashi K (1985) Modification method to obtain mature dry seeds by sucrose solution culture of detached wheat ears. Res Rep Kochi Univ 33. (Agric. Sci.):63–70

    Google Scholar 

  • Kato K, Tomo S, Yamazaki S, Hayashi K (1990) Simplified culture method of detached ears and its application to vernalization in wheat. Euphytica 49:161–168

    Article  Google Scholar 

  • Kaur H (2004) Development of methods for high frequency haploid production in wheat using wheat x maize crosses. M.Sc. Thesis, Punjab Agricultural University, Ludhiana, India

    Google Scholar 

  • Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccioand ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00414

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Liebler T (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109

    Article  CAS  PubMed  Google Scholar 

  • Kisana NS, Nkongolo KK, Quick JS, Johnson DL (1993) Production of doubled haploids by anther culture and wheat x maize method in a wheat breeding programme. Plant Breed 110:96–102

    Article  Google Scholar 

  • Knox RE, Clarke JM, De Pauw RM (2000) Dicamba and growth condition effects on doubled haploid production. Plant Breed 119:289–298

    Article  Google Scholar 

  • Kuchel H, Ye G, Fox G, Jefferies S (2005) Genetic and economic analysis of a targeted marker- assisted wheat breeding strategy. Mol Breed 16:67–78

    Article  Google Scholar 

  • Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SWL et al (2015) Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLoS Genet 11:e1005494. https://doi.org/10.1371/journal.pgen.1005494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lan X, Wei Y, Liu D, Yan Z, Zheng Y (2005) Inheritance of seed dormancy in tibetan semi-wild wheat accession Q1028. J Appl Genet 46:133–138. Available online at: http://jag.igr.poznan.pl/2005-Volume-46/2/pdf/ 2005_Volume_46_2-133-138.pdf

    PubMed  Google Scholar 

  • Laurie DA (1989) Factors affecting fertilization frequency in crosses of Triticum aestivum cv. Hinghbury and Zea mays cv Seneca 60. Plant Breed 103:133–140

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat x maize hybridization. Can J Genet Cytol 28:313–316

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1987) The effect of the crossability loci Kr1 and Kr2 on fertilization frequency in hexaploid wheat x maize crosses. Theor Appl Genet 73:403–409

    Article  CAS  PubMed  Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat x maize crosses. Theor Appl Genet 76:393–397

    Article  CAS  PubMed  Google Scholar 

  • Laurie DA, O’Donoughue LS (1989) Wheat x maize crosses. Annual Report AFRC Institute of Plant Science Research and John Innes Institute, UK, pp 3–4

    Google Scholar 

  • Laurie DA, Reymondie S (1991) High frequency of fertilization and haploid seedling production in crosses between commercial hexaploid wheat varieties and maize. Plant Breed 106:182–189

    Article  Google Scholar 

  • Laurie D A, Snape J W (1990) The agronomic performance of wheat doubled haploid lines derived from wheat x maize crosses. Theor Appl Genet79(6):813–816

    Google Scholar 

  • Lefebvre D, Devaux P (1996) Doubled haploids of wheat x maize crosses: genotypic influence, fertility and inheritance of IBL-IRS chromosome. Theor Appl Genet 93:1267–1273

    Google Scholar 

  • Li DW, Qio JW, Ouyang P, Yoa QX, Dawli LD, Jiwen Q, Ping O, Qingxiao Y (1996) High frequency of fertilization and embryo formation in hexaploid wheat x Tripsacum dactyloides crosses. Theor Appl Genet 92:1103–1107

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zwer P, Wang H, Liu C, Lu Z, Wang Y et al (2016) A fast generation cycling system for oat and triticale breeding. Plant Breed 135:574–579. https://doi.org/10.1111/pbr.12408

    Article  Google Scholar 

  • Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4-bp insertion at zmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol Plant 10:520–522

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari S, Tan EH, West A, Chris FH, Franklin CL, Chan SWL (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet. https://doi.org/10.1371/journal.pgen.1004970

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Mangat GS (2000) Genetic analysis of rust resistance in wheat variety PBW 343 using recombinant inbred lines and wheat x maize derived doubled haploids. Ph. D. Dissertation, Punjab Agricultural University, Ludhiana, India

    Google Scholar 

  • Martin LP, Guedes PH, Pinto CO, Snape J (2001) The effect of spikelet position on the success frequencies of wheat haploid production using the maize crops system. Euphytica 121:265–271

    Article  Google Scholar 

  • Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113:125–129

    Article  Google Scholar 

  • Mochida K, Tsujimoto H (2001) Production of wheat doubled haploids by pollination with Job’s tears (Coix Lachryma-jobi L). J Hered 92:81–83

    Article  CAS  PubMed  Google Scholar 

  • Morshedi AR, Darvey NL (1997) Effects of gelling agents on germination of immature embryos derived from wheat x maize crosses. SABRAO J 29:73–78

    Google Scholar 

  • Murashige T, Skoog S (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niu Z, Jiang A, Hammad WA, Oladzadabbasabadi A, Xu S, Mergoum M et al (2014) Review of doubled haploid production in durum and common wheat through wheat x maize hybridization. Plant Breed 133:313–320. https://doi.org/10.1111/pbr.12162

    Article  CAS  Google Scholar 

  • Ochatt SJ, Sangwan RS (2010) In vitro flowering and seed set: acceleration of generation cycles. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, Chichester, pp 97–110

    Chapter  Google Scholar 

  • Ochatt SJ, Sangwan RS, Marget P, Ndong YA, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440. https://doi.org/10.1046/j.1439-0523.2002.746803.x

    Article  Google Scholar 

  • Ohkawa Y, Shenaga K, Ogawa T (1992) Production of haploid wheat plants through pollination of sorghum pollen. Jpn J Breed 42:891–898

    Article  Google Scholar 

  • Ouyang JW, Hu H, Chang CC, Tseng CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Sci Sinica 16:79–85

    Google Scholar 

  • Ouyang JW, Liang H, Jia SE, Zhang C, Zhao TH, He LZ, Jia X (1994) Studies on the chromosome doubling of wheat pollen plants. Plant Sci 98:209–214

    Article  CAS  Google Scholar 

  • Pioneer (2008) Fast corn technology. Available online at: https://www.pioneer.com/home/site/about/news-media/media-kits/fast-corn-technology. Accessed 10 Oct 2017

  • Puja (2007) Studies on doubled haploid production in durum wheat (Triticum turgidum L. ssp durum (Desf.). Ph.D. dissertation, Punjab Agricultural University, Ludhiana, India

    Google Scholar 

  • Qin J, Wang H (2002) The effectiveness of vernalization of immature embryos of winter wheat. Acta Agric Bor Sin 17:143

    Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615–618. M

    Article  CAS  PubMed  Google Scholar 

  • Ribalta FM, Croser JS, Erskine W, Finnegan PM, Lulsdorf MM, Ochatt SJ (2014) Antigibberellin-induced reduction of internode length favors in vitro flowering and seed-set in different pea genotypes. Biol Plant 58:39–46. https://doi.org/10.1007/s10535-013-0379-0

    Article  CAS  Google Scholar 

  • Riera- Lizarazu O, Mujeeb-Kazi A (1990) Maize (Zea mays L.) mediated wheat (Triticum aestivum L.) polyhaploid production using various crossing methods. Cereal Res Commun 18:339–345

    Google Scholar 

  • Riera-Lizarazu O, Mujeeb-Kazi A, William MDHM (1992) Maize (Zea mays L.) mediated polyhaploid production in some Triticeae using a detached tiller method. J Genet Breed 46:335–346

    Google Scholar 

  • Sadasivaiah RS, Orshinsky BR, Kozub GC (1999) Production of wheat haploids using anther culture and wheat x maize hybridization techniques. Cereal Res Commun 27:33–40

    Google Scholar 

  • Sadasivaiah R, Orshinsky BR, Perkovic SM, Beres BL (2001) Colchicine-induced chromosome doubling in wheat haploids. Wheat Inf Serv 93:1–4

    Google Scholar 

  • Sandhu APS, Dhawan R, Gill MS, Bains NS (2002) Wheat x maize crosses using chemical hybridizing agents. Crop Improv 29:154–159

    Google Scholar 

  • Sandhu APS, Dhawan R, Gill MS, Bains NS (2003) Evaluation of rapid crossing techniques for haploid production in wheat x maize crosses. Indian J Genet 63:155–156

    Google Scholar 

  • Sanie M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. 108. Available at: www.pnas.org/cgi/doi/10.1073/pnas.1103190108. Last Accessed on 5 Oct 2013

  • Singh S (2014) Evaluation of different antimicrotubular compounds for chromosome doubling in wheat haploids. M.Sc. Thesis, Punjab Agricultural University

    Google Scholar 

  • Singh G (2016) Development and molecular marker characterization of a backcross derived wheat population for genetic analysis of drought tolerance. PhD Dissertation, Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Singh BK, Jenner CF (1983) Culture of detached ears of wheat in liquid culture: modification and extension of the method. Aust J Plant Physiol 10:227–236

    Article  Google Scholar 

  • Singh S, Sethi GS, Chaudhary HK (2004) Different responsiveness of winter and spring wheat genotypes to maize-mediated production of haploids. Cereal Res Commun 32:201–207

    CAS  Google Scholar 

  • Singh K, Chhuneja P, Bains NS (2012) Wide hybridization for alien gene transfer and haploid induction in wheat. In: Singh SS, Hanchinal RR, Singh G, Sharma RK, Tyagi BS, Saharan MS, Sharma I (eds) Wheat productivity enhancement under changing climate. Narosa Publishing House, India, pp 162–175

    Google Scholar 

  • Sood S, Dhawan R, Singh K, Bains NS (2003) Development of novel chromosome doubling strategies for wheat x maize system of wheat haploid production. Plant Breed 122:493–496

    Article  Google Scholar 

  • Soriano M, Cistue L, Vallés MP, Castillo AM (2007) Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.) Plant Cell Tissue Organ Cult 91:225–234

    Article  CAS  Google Scholar 

  • Sourour A, Zoubeir C, Ons T, Youssef T, Hajer S (2012) Performance of durum wheat (Triticum durum L.) doubled haploids derived from durum wheat x maize crosses. J Plant Breed Crop Sci 4:32–38

    Google Scholar 

  • Subrahmanyam NCFF, Kasha KJ (1973) Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma 42:111–125

    Article  Google Scholar 

  • Suenaga K (1994) Doubled haploid system using the intergeneric crosses between wheat (Triticum aestivum) and maize (Zea mays). Bull Natl Inst Agrobiol Res 9:83–139

    CAS  Google Scholar 

  • Suenaga K, Nakajima K (1989) Efficient production of haploid wheat (Triticum aestivum) through crosses between Japanese wheat and maize (Zea mays). Plant Cell Rep 8:263–266

    Article  CAS  PubMed  Google Scholar 

  • Suenaga K, Marschedi AR, Darvey NL (1997) Haploid production of Australian wheat (Triticum aestivum L.) cultivars through wheat x maize (Zea mays L.) crosses. Aust J Agr Res 48:1207–1211

    Article  Google Scholar 

  • Thiebaut J, Kasha KJ, Tsai A (1979) Influence of plant development stage, temperature and plant hormones on chromosome doubling of barley using colchicine. Can J Bot 57:480–483

    Article  CAS  Google Scholar 

  • Thomas J, Chen Q, Howes N (1997) Chromosome doubling of haploids of common wheat with caffeine. Genome 40:552–558

    Article  CAS  PubMed  Google Scholar 

  • Ushiyama T, Shimizu T, Kuwabara T (1991) High frequency of haploid production of wheat through intergeneric cross with Teosinte. Jpn J Breed 41:335–357

    Article  Google Scholar 

  • Verma V, Bains NS, Mangat GS, Nanda GS, Gosal SS, Singh K (1999) Maize genotypes show striking differences for induction and regeneration of haploid wheat embryos in wheat x maize system. Crop Sci 49:1722–1727

    Article  Google Scholar 

  • Wang H, Xie X, Sun G, Zhao Y, Zhao H, Chai J, et al. (1999) Fast breeding technique to achieve many generations a year in plants. Vol. Patent Cn1262031ahebei, China

    Google Scholar 

  • Wang H, Wang Y, Zhao H (2003) How to accelerate the process of plant genetic modification. J Hebei Agr Sci 7:50–56

    Google Scholar 

  • Wędzony M, Forster BP, Žur I, Golemiec E, Szechyńska-Hebda M, Dubas E, Gotębiowska G (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Science + Business Media B.V, Dordrecht, pp 1–34. ISBN 978-1-4020-8853-7

    Google Scholar 

  • Yan G, Liu H, Wang H, Lu Z, Wang Y, Mullan D, Hamblin J, Liu C (2017) Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci 8:1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Zhang P, Wang H, Lu Z, Liu C, Liu H et al (2016) How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations. Euphytica 209:113–119. https://doi.org/10.1007/s10681-016-1643-0

    Article  CAS  Google Scholar 

  • Yao Y, Zhang P, Liu H, Lu Z, Yan G (2017) A fully in vitro protocol towards large scale production of recombinant inbred lines in wheat (Triticum aestivum L.) Plant Cell Tissue Organ Cult 128:655–661. https://doi.org/10.1007/s11240-016-1145-8

    Article  CAS  Google Scholar 

  • Yuichi H, Takashi O, Tetsuhiro M, Shinji T (2002) Breeding of new wheat cultivar ‘Sanukinoyume 2000’. Bull 55:1–8. Kagewa prefecture Agricultural Experimental Station

    Google Scholar 

  • Zenkteler M, Nitzsche W (1984) Wide hybridization experiments in cereals. Theor Appl Genet 68:311–315

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Friebe B, Raupp WJ, Harrison SA, Gill BS (1996) Wheat embryogenesis and haploid production in wheat x maize hybrids. Euphytica 90:315–324

    Article  Google Scholar 

  • Zheng Z, Wang HB, Chen GD, Yan GJ, Liu CJ (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191:311–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, P., Bains, N.S. (2018). Accelerated Wheat Breeding: Doubled Haploids and Rapid Generation Advance. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_13

Download citation

Publish with us

Policies and ethics