Skip to main content

Introduction and Motivation of Models

  • Chapter
  • First Online:
Coherent Structures in Granular Crystals

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 390 Accesses

Abstract

In the present short volume our aim will be to explore a variety of nonlinear wave structures that are found in a particular physical system, i.e., granular crystals. Many of the readers have almost certainly encountered a variant of the granular crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A note on nomenclature: In the literature, a monomer chain is also called a monatomic chain, uniform chain, or homogenous chain.

  2. 2.

    The choice of \(N-1\) is made purely for reasons of notational convenience.

References

  1. V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer, New York, 2001)

    Book  Google Scholar 

  2. H. Hertz, Über die Berührung fester elastischer Körper. J. Reine. Angew. Math. 92, 156 (1881)

    MATH  Google Scholar 

  3. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  4. C. Chong, M.A. Porter, P.G. Kevrekidis, C. Daraio, Nonlinear coherent structures in granular crystals. J. Phys. Condens. Matter 29, 413003 (2017)

    Google Scholar 

  5. G. Friesecke, J.A.D. Wattis, Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161, 391 (1994)

    Google Scholar 

  6. R.S. MacKay, Solitary waves in a chain of beads under Hertz contact. Phys. Lett. A 251, 191 (1999)

    Google Scholar 

  7. A. Merkel, V. Tournat, V. Gusev, Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107, 225502 (2011)

    Article  ADS  Google Scholar 

  8. J. Cabaret, P. Béquin, G. Theocharis, V. Andreev, V.E. Gusev, V. Tournat, Nonlinear hysteretic torsional waves. Phys. Rev. Lett. 115, 054301 (2015)

    Article  ADS  Google Scholar 

  9. F. Allein, V. Tournat, V. Gusev, G. Theocharis, Tunable magneto-granular phononic crystals. Appl. Phys. Lett. 108, 161903 (2016)

    Article  ADS  Google Scholar 

  10. W. Lin, C. Daraio, Wave propagation in one-dimensional microscopic granular chains. Phys. Rev. E 94, 052907 (2016)

    Article  ADS  Google Scholar 

  11. J. Yang, S. Dunatunga, C. Daraio, Amplitude-dependent attenuation of compressive waves in curved granular crystals constrained by elastic guides. Acta Mech. 223, 549 (2012)

    Article  MATH  Google Scholar 

  12. J. Yang, M. Sutton, Nonlinear wave propagation in a hexagonally packed granular channel under rotational dynamics. Int. J. Solids Struct. 77, 65 (2015)

    Article  Google Scholar 

  13. P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Géotechnique 29, 47 (1979)

    Article  Google Scholar 

  14. D. Zabulionis, R. Kačianauskas, D. Markauskas, J. Rojek, An investigation of nonlinear tangential contact behaviour of a spherical particle under varying loading. Bull. Pol. Acad. Sci. Tech. Sci. 60, 265 (2012)

    Google Scholar 

  15. N. Boechler, G. Theocharis, C. Daraio, Bifurcation based acoustic switching and rectification. Nat. Mater. 10, 665 (2011)

    Article  ADS  Google Scholar 

  16. C. Hoogeboom, Y. Man, N. Boechler, G. Theocharis, P.G. Kevrekidis, I.G. Kevrekidis, C. Daraio, Hysteresis loops and multi-stability: From periodic orbits to chaotic dynamics (and back) in diatomic granular crystals. Euro. Phys. Lett. 101, 44003 (2013)

    Article  ADS  Google Scholar 

  17. A. Rosas, A.H. Romero, V.F. Nesterenko, K. Lindenberg, Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98, 164301 (2007)

    Article  ADS  Google Scholar 

  18. A. Rosas, A.H. Romero, V.F. Nesterenko, K. Lindenberg, Short-pulse dynamics in strongly nonlinear dissipative granular chains. Phys. Rev. E 78, 051303 (2008)

    Article  ADS  Google Scholar 

  19. M. Peyrard, I. Daumont, Statistical properties of one-dimensional "turbulence". Europhys. Lett. 59, 834 (2002)

    Article  ADS  Google Scholar 

  20. N.V. Brilliantov, A.V. Pimenova, D.S. Goldobin, A dissipative force between colliding viscoelastic bodies: rigorous approach. EPL (Europhys. Lett.) 109, 14005 (2015)

    Google Scholar 

  21. R. Carretero-González, D. Khatri, M.A. Porter, P.G. Kevrekidis, C. Daraio, Dissipative solitary waves in granular crystals. Phys. Rev. Lett. 102, 024102 (2009)

    Article  ADS  Google Scholar 

  22. L. Vergara, Model for dissipative highly nonlinear waves in dry granular systems. Phys. Rev. Lett. 104, 118001 (2010)

    Article  ADS  Google Scholar 

  23. M. Gonzalez, J. Yang, C. Daraio, M. Ortiz, Mesoscopic approach to granular crystal dynamics. Phys. Rev. E 85, 016604 (2012)

    Article  ADS  Google Scholar 

  24. R.K. Pal, J. Morton, E. Wang, J. Lambros, P.H. Geubelle, Impact response of elasto-plastic granular chains containing an intruder particle. J. Appl. Mech. 82, 38 (2015)

    Google Scholar 

  25. H.A. Burgoyne, C. Daraio, Elastic-plastic wave propagation in uniform and periodic granular chains. J. Appl. Mech. 82, 081002 (2015)

    Article  ADS  Google Scholar 

  26. H. Burgoyne, C. Daraio, Strain-rate-dependent model for the dynamic compression of elastoplastic spheres. Phys. Rev. E 89, 032203 (2014)

    Article  ADS  Google Scholar 

  27. H.A. Burgoyne, Dynamics of granular crystals with elastic–plastic contacts, 2016. Ph.D. Dissertation, California Institute of Technology (2016). https://doi.org/10.7907/Z9J38QG6

  28. T. On, P.A. LaVigne, J. Lambros, Development of plastic nonlinear waves in one-dimensional ductile granular chains under impact loading. Mech. Mater. 68, 29 (2014)

    Article  Google Scholar 

  29. T. On, E. Wang, J. Lambros, Plasticwaves in one-dimensional heterogeneous granular chains under impact loading: single intruders and dimer chains. Int. J. Solids Struct. 62, 81 (2015)

    Article  Google Scholar 

  30. J. Yang, M. Gonzalez, E. Kim, C. Agbasi, M. Sutton, Attenuation of solitary waves and localization of breathers in 1D granular crystals visualized via high speed photography. Exp. Mech. 54, 1043 (2014)

    Article  Google Scholar 

  31. S. Sen, J. Hong, J. Bang, E. Avalos, R. Doney, Solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)

    Google Scholar 

  32. G. Theocharis, N. Boechler, C. Daraio, Nonlinear Phononic Periodic Structures and Granular Crystals, Acoustic Metamaterials, Phononic Crystals (Springer, Berlin, 2013), pp. 217–251

    Book  Google Scholar 

  33. A.F. Vakakis, Analytical methodologies for nonlinear periodic media, Wave Propagation in Linear and Nonlinear Periodic Media, (International Center for Mechanical Sciences (CISM) Courses and Lectures) (Springer, Berlin, 2012), p. 257

    Book  Google Scholar 

  34. M.A. Porter, P.G. Kevrekidis, C. Daraio, Granular crystals: nonlinear dynamics meets materials engineering. Phys. Today 68, 44 (2015)

    Article  Google Scholar 

  35. Y. Starosvetsky, K. Jayaprakash, M.A. Hasan, A. Vakakis, Dynamics and Acoustics of Ordered Granular Media (World Scientific, Singapore, 2017)

    Google Scholar 

  36. M.J. Ablowitz, M. Hoefer, Dispersive shock waves. Scholarpedia 4, 5562 (2009)

    Google Scholar 

  37. G.A. El, M.A. Hoefer, M. Shearer, Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws. SIAM Rev. 59, 3–61 (2017)

    Google Scholar 

  38. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1983)

    Google Scholar 

  39. S. Flach, A. Gorbach, Discrete breathers: advances in theory and applications. Phys. Rep. 467, 1 (2008)

    Google Scholar 

  40. S. Aubry, Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems. Phys. D 216, 1 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Chong .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chong, C., Kevrekidis, P.G. (2018). Introduction and Motivation of Models. In: Coherent Structures in Granular Crystals. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-77884-6_1

Download citation

Publish with us

Policies and ethics