Skip to main content

Advanced Concept of Green Synthesis of Metallic Nanoparticles by Reducing Phytochemicals

  • Chapter
  • First Online:
Nanobotany

Abstract

In the past nanoparticles were produced by physical and chemical methods. There are many drawbacks of physical and chemical methods like use of toxic solvents, generation of hazardous by-products, and high energy consumption. Therefore, in recent years, researchers are more focused towards the development of efficient methods of green synthesis. Production of well-characterized nanoparticles by using various plants extract is more sustainable, eco-friendly and faster technique.Varying the size and morphology of the nanoparticles greatly influences its functional ability.Hence various applications of nanoparticle synthesis by green synthesis is possible.Scientists are using whole plant extracts or tissues for the bio reduction of nanoparticles like gold, silver, copper, zinc oxide, platinum, palladium and cobalt. Polyphenolic (Flavonoids, alkaloids, terpenoids, phenolic compounds) compounds of plants are generally considered as the best reducing agents. However the composition of these polyphenolic varies in different plant species.There is a need to devise a method in which optimized and controlled amount of phytochemicals may produce the desired product with a higher reproducibility rate, in lesser time and cost as well. It is predicted that quantification and isolation of phytochemicals, and tissue culture technique can be a useful technique to produce significantly dynamic particles. In the present chapter authors describe the role of different phytochemicals in bio reduction of metallic ions and list of medicinal and edible plants, effective against anti carcinogenic and antimicrobial activity. These plants can be a potential and active source of phytochemicals for the bio synthesis of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbafor KN, Nwachukwu N (2011) Phytochemical analysis and antioxidant property of leaf extract of Vitex doniana and Mucuna pruriens. Bio Chem Res Int 2011:1–4

    Google Scholar 

  • Ahmad N, Sharma S, Alam MK et al (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Ali-Shtayeh MS, Al-Nuri MA, Yaghmour RMR, Faidi YR (1997) Antimicrobial activity of Micromeria nervosa from the Palestinian area. J Ethnopharmacol 58(3):143–147

    Article  CAS  PubMed  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Tox 46(2):446–475

    Article  CAS  Google Scholar 

  • Berkada B (1978) Preliminary report on warfarin for the treatment of herpes simplex. J Irish Coll Phys Surg 22:56

    Google Scholar 

  • Bose PK (1958) On some biochemical properties of natural coumarins. J Ind Chem Soc 58:367–375

    Google Scholar 

  • Burdick EM (1971) Carpaine: an alkaloid of Carica papaya—its chemistry and pharmacology. Eco Bot 25(4):363–365

    Article  CAS  Google Scholar 

  • Cichewicz RH, Thorpe PA (1996) The antimicrobial properties of chile peppers (Capsicum species) and their uses in Mayan medicine. J Ethnopharmacol 52(2):61–70

    Article  CAS  PubMed  Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7(2):66–76

    Article  CAS  Google Scholar 

  • Cushnie TT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva EC, Da Silva MGA, Meneghetti SMP et al (2008) Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanopar Res 10(1):201–208

    Article  CAS  Google Scholar 

  • Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 7:1189–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson NG (2008) Sweating the small stuff: environmental risk and nanotechnology. BioSci 58(8):690–690

    Article  Google Scholar 

  • Dekker M, Verkerk R (2003) Dealing with variability in food production chains: a tool to enhance the sensitivity of epidemiological studies on phytochemicals. Eur J Nut 42(1):67–72

    Article  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Coll Surf A Physicochem Eng Aspects 369(1):27–33

    Article  CAS  Google Scholar 

  • Elumalai EK, Prasad TNVK, Nagajyothi PC, David E (2011) A bird’s eye view of biogenic silver nanoparticles and their applications. Pelagia Res Lib 2:88–97

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G et al (1999) Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanopart Res 1(3):397–404

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K et al (2000) Reduction and accumulation of gold (III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Env Sci Tech 34(20):4392–4396

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E et al (2002a) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Parsons JG et al (2002b) Characterization of trace level Au (III) binding to alfalfa biomass (Medicago sativa) by GFAAS. Adv Env Res 6(3):313–323

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR et al (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361

    Article  CAS  Google Scholar 

  • Gengan RM, Anand K, Phulukdaree A, Chuturgoon A (2013) A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Coll Surf B Biointerfaces 105:87–91

    Article  CAS  Google Scholar 

  • Ghoshal S, Prasad BK, Lakshmi V (1996) Antiamoebic activity of Piper longum fruits against Entamoeba histolytica in vitro and in vivo. J Ethnophorm 50(3):167–170

    Article  CAS  Google Scholar 

  • Glusker JP, Katz A, Bock CW, Rigaku J (1999) Metal ions in biological systems. Glusker Jenny P 6:8–16

    Google Scholar 

  • Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest 3(1):394–399

    CAS  Google Scholar 

  • Hamburger M, Hostettmann K (1991) Bioactivity in plants: the link between phytochemistry and medicine. Phytochemistry 30(12):3864–3874

    Article  CAS  Google Scholar 

  • Himejima M, Kubo I (1991) Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J Agr Food Chem 39(2):418–421

    Article  CAS  Google Scholar 

  • Holst B, Williamson G (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opi Biotech 19(2):73–82

    Article  CAS  Google Scholar 

  • Hu ML (2011) Dietary polyphenols as antioxidants and anticanceragents: more questions than answers. Chang Gung Med J 34(5):449–460

    PubMed  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(1):1–24

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  • Jacob SJP, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Coll Surf B Biointerfaces 91:212–214

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kumar V, Prasad K (2009) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotech Prog 25(5):1476–1479

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  CAS  Google Scholar 

  • Johnson IT (2007) Phytochemicals and cancer. Proceed Nut Soc 66(02):207–215

    Article  CAS  Google Scholar 

  • Jones SB Jr, Luchsinger AE (1986) Plant systematics. McGraw-Hill Book Co, New York

    Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085

    Article  CAS  Google Scholar 

  • Katti K, Chanda N, Shukla R et al (2009) Green nanotechnology from cumin phytochemicals: generation of biocompatible gold nanoparticles. Int J Green Nanotech: Biomed 1(1):B39–B52

    Google Scholar 

  • Khan MA, Khan T, Nadhman A (2016) Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Coll Interface Sci 234:132–141

    Google Scholar 

  • Kim J, Rheem Y, Yoo B, Chong Y et al (2010) Peptide-mediated shape-and size-tunable synthesis of gold nanostructures. Acta Biomater 6(7):2681–2689

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Kumari M M, Philip D (2013) Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil. Spectrochimica Acta Part A Mol Biomol Spect 111:154–160

    Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomat 8:1–16

    Google Scholar 

  • Lisar SYS, Motafakkerazad R, Hossain MM (2012) Water stress in plants: causes, effects and responses, Water Stress, Prof. Ismail Md. Mofizur Rahman (Ed.), ISBN: 978-953-307-963-9, InTech

    Google Scholar 

  • Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Coll Interface Sci 353(2):433–444

    Article  CAS  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):20

    Google Scholar 

  • Mandal S, Selvakannan PR, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. J Chem Sci 114(5):513–520

    Article  CAS  Google Scholar 

  • Martinez MJ, Betancourt J, Alonso-Gonzalez N, Jauregui A (1996) Screening of some Cuban medicinal plants for antimicrobial activity. J Ethnopharmacol 52(3):171–174

    Article  CAS  PubMed  Google Scholar 

  • Mathur M (2014) Properties of phtyo-reducing agents utilize for production of nano-particles, existing knowledge and gaps. Int J Pure App Biosci 2(2):113–130

    Google Scholar 

  • Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444(7117):267–269

    Article  CAS  PubMed  Google Scholar 

  • McDevitt JT, Schneider DM, Katiyar SK, Edlind TD (1996) Berberine: a candidate for the treatment of diarrhea in AIDS patients, abstr. 175. In: Program and abstracts of the 36th interscience conference on antimicrobial agents and chemotherapy. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Mubarak AD, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Coll Surf B: Biointerfaces 85(2):360–365

    Article  CAS  Google Scholar 

  • Mukunthan KS, Balaji S (2012) Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Green Nanotech 4(2):71–79

    Article  CAS  Google Scholar 

  • Murray MT (1998) Quercitin: nature’s antihistamine. Better Nutr 60(4):10

    Google Scholar 

  • Navarro V, Villarreal ML, Rojas G, Lozoya X (1996) Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J Ethnopharmacol 53(3):143–147

    Article  CAS  PubMed  Google Scholar 

  • Nishino H, Satomi Y, Tokuda H, Masuda M (2007) Cancer control by phytochemicals. Curr Pharm Des 13(33):3394–3399

    Article  CAS  PubMed  Google Scholar 

  • Njagi EC, Huang H, Stafford L et al (2010) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271

    Article  CAS  PubMed  Google Scholar 

  • Ofek I, Goldhar J, Sharon N (1996) Anti-Escherichia coli adhesin activity of cranberry and blueberry juices. In: Toward anti-adhesion therapy for microbial diseases. Springer US, Boston, pp 179–183

    Chapter  Google Scholar 

  • Omulokoli E, Khan B, Chhabra SC (1997) Antiplasmodial activity of four Kenyan medicinal plants. J Ethnopharmacol 56(2):133–137

    Article  CAS  PubMed  Google Scholar 

  • Osato JA, Santiago LA, Remo GM, Cuadra MS, Mori A (1993) Antimicrobial and antioxidant activities of unripe papaya. Life Sci 53(17):1383–1389

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotech 5(3):69–78

    Article  CAS  Google Scholar 

  • Peteros NP, Uy MM (2010) Antioxidant and cytotoxic activities and phytochemical screening of four Philippine medicinal plants. J Med Plants Res 4(5):407–414

    Google Scholar 

  • Raghunandan D, Bedre MD, Basavaraja S et al (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Coll Surfaces B Biointerfaces 79(1):235–240

    Article  CAS  Google Scholar 

  • Rana BK, Singh UP, Taneja V (1997) Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. J Ethnopharmacol 57(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotech Adv 20(2):101–153

    Article  CAS  Google Scholar 

  • Rejeski D, Lekas D (2008) Nanotechnology field observations: scouting the new industrial west. J Clean Prod 16(8):1014–1017

    Article  Google Scholar 

  • Roy N, Barik A (2010) Green synthesis of silver nanoparticles from the unexploited weed resources. Int J Nanotech Appl 4(2):95–101

    Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Reg 34(1):3–21

    Article  CAS  Google Scholar 

  • Satrija F, Nansen P, Murtini S, He S (1995) Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. J Ethnopharmacol 48(3):161–164

    Article  CAS  PubMed  Google Scholar 

  • Scheel LD (2016) The biological action of the coumarins. Microb Tox 8:47–66

    Google Scholar 

  • Sheny DS, Mathew J, Philip D (2012) Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale. Spectrochimica Acta Part A Mol Biomol Spectrosc 97:306–310

    Article  CAS  Google Scholar 

  • Shiv Shankar S, Ahmad A, Pasricha R (2003) Sastry M. J Mater Chem 13:1822–1846

    Article  CAS  Google Scholar 

  • Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem A Eur J 13(11):3160–3168

    Article  CAS  Google Scholar 

  • Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H (2015) Resveratrol nanoformulation for cancer prevention and therapy. Annals NY Acad Sci 1348(1):20–31

    Article  CAS  Google Scholar 

  • Sies H, Stahl W, Sundquist AR (1992) Antioxidant functions of vitamins. Ann NY Acad Sci 669(1):7–20

    Article  CAS  PubMed  Google Scholar 

  • Silva LP, Reis IG, Bonatto CC (2015) Green synthesis of metal nanoparticles by plants: current trends and challeges. In: Vladimir AB, Elena VB (eds) Green processes for nanotechnology from inorganic to bioinspired nanomaterials. Springer, Cham, pp 259–275

    Google Scholar 

  • Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopar Res 12(5):1667–1675

    Article  CAS  Google Scholar 

  • Smitha SL, Philip D, Gopchandran KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta Part A Mol Biomol Spec 74(3):735–739

    Article  CAS  Google Scholar 

  • Stephen A, Seethalakshmi S (2013) Phytochemical synthesis and preliminary characterization of silver nanoparticles using hesperidin. J Nanosci 2013(6):1–6

    Article  CAS  Google Scholar 

  • Tan YN, Lee JY, Wang DI (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Amr Chem Soc 132(16):5677–5686

    Article  CAS  Google Scholar 

  • Vasanthi P, Ganapathy M, Evanjelene VK et al (2014) Phytochemical screening and antioxidant activity of extracts of the leaf and bark of Albizzia lebbeck (Benth). Acad J Med Plant 2:026–031

    CAS  Google Scholar 

  • Verpoorte R, Van der Heijden R, Ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21(6):467–479

    Article  CAS  Google Scholar 

  • Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240

    Article  CAS  Google Scholar 

  • Vilas V, Philip D, Mathew J (2014) Catalytically and biologically active silver nanoparticles synthesized using essential oil. Spectrochimica Acta Part A Mol Biomol Spect 132:743–750

    Article  CAS  Google Scholar 

  • Wan J, Wilcock A, Coventry MJ (1998) The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. J Appl Microbiol 84(2):152–158

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2000) Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. In IV international symposium on in vitro culture and horticultural breeding 560:285–292

    Google Scholar 

  • Wild R (1994) The complete book of natural and medicinal cures. Rodale Press, Inc, Emmaus, pp 50–56

    Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape controlled synthesis of metal nanostructures: the case of silver. Chem A Eur J 11(2):454–463

    Article  CAS  Google Scholar 

  • Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW, Mahdi MA (2011) Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int J Nanomedicine 6:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zayed MF, Eisa WH, Shabaka AA (2012) Spectrochim. Acta A Mol Biomol Spectrosc 98:423–428

    Article  CAS  Google Scholar 

  • Zwenger S (2008) Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev 3(1):1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yousaf, Z., Saleh, N. (2018). Advanced Concept of Green Synthesis of Metallic Nanoparticles by Reducing Phytochemicals. In: Javad, S., Butt, A. (eds) Nanobotany. Springer, Cham. https://doi.org/10.1007/978-3-319-77119-9_2

Download citation

Publish with us

Policies and ethics