Skip to main content
Log in

Synthesis of colloids based on gold nanoparticles dispersed in castor oil

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

New colloidal solutions of gold nanoparticles (AuNP), using castor oil as a nontoxic organic dispersant agent, were prepared via three different methods. In all three cases, tetrachloroauric(III) acid was employed as the gold source. The colloids were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The AuNP produced by the three methods were quasispherical in shape, however with different average sizes. The individual characteristics of the nanoparticles presented in each colloidal system were also confirmed by observation of absorption maxima at different wavelengths of visible light. Each method of synthesis leads to colloids with different grades of stability with respect to particle agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Binder RG, Kohler GO, Goldblatt LA, Applewhite TH (1962) Chromatographic analysis of seed oils. Fatty acid composition of castor oil. J Am Oil Chem Soc 39:513–517. doi:10.1007/BF02672540

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a

    Article  CAS  Google Scholar 

  • Chen S, Liu Y, Wu G (2005) Stabilized and size-tunable gold nanoparticles formed in a quaternary ammonium-based room-temperature ionic liquid under γ-irradiation. Nanotechnology 16:2360–2364. doi:10.1088/0957-4484/16/10/061

    Article  CAS  Google Scholar 

  • Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D et al (2007) A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7:3759–3765. doi:10.1021/nl072209h

    Article  CAS  Google Scholar 

  • Cushing BL, Kolesnishenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. doi:10.1021/cr030027b

    Article  CAS  Google Scholar 

  • Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269. doi:10.1021/cr050943k

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  • Doty RC, Tshikhudo TR, Brust M, Fernig DG (2005) Extremely stable water-soluble Ag nanoparticles. Chem Mater 17:4630–4635. doi:10.1021/cm0508017

    Article  CAS  Google Scholar 

  • Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3691. doi:10.1021/cr010338r

    Article  CAS  Google Scholar 

  • El-Sayed IH, Huang XH, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834. doi:10.1021/nl050074e

    Article  CAS  Google Scholar 

  • Fens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci (Lond) 241:20–22

    Google Scholar 

  • Fink J, Kiely CJ, Bethell D, Schiffrin DJ (1998) Self-organization of nanosized gold particles. Chem Mater 10:922–926. doi:10.1021/cm970702w

    Article  CAS  Google Scholar 

  • Finke RG (2002) Transition-metal nanoclusters: solution-phase synthesis, then characterization and mechanism of formation, of polyoxoanion and tetrabutylammonium-stabilized nanoclusters. In: Feldheim DL, Foss CA Jr (eds) Metal nanoparticles: synthesis, characterization and applications. Marcel Dekker, New York

    Google Scholar 

  • Fischer R, Neshev DN, Krolikowski W, Kivshar YS, Meneghetti MR, Iturbe-Castillo D et al (2006) Oblique interaction of spatial dark-soliton stripes in nonlocal media. Opt Lett 31:3010–3012. doi:10.1364/OL.31.003010

    Article  Google Scholar 

  • Fu A, Gu W, Boussert B, Koski K, Gerion D, Manna L et al (2007) Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Lett 7:179–182. doi:10.1021/nl0626434

    Article  CAS  Google Scholar 

  • Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871. doi:10.1021/jp0105488

    Article  CAS  Google Scholar 

  • Ghofraniha N, Conti C, Ruocco G, Trillo S (2007) Shocks in nonlocal media. Phys Rev Lett 99:043903. doi:10.1103/PhysRevLett.99.043903

    Google Scholar 

  • Jena BK, Raj CR (2007) Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. J Phys Chem C 111:15146–15153. doi:10.1021/jp072363s

    Article  CAS  Google Scholar 

  • Johnson W (2007) Final report on the safety assessment of ricinus communis (castor) seed oil, hydrogenated castor oil, glyceryl ricinoleate, glyceryl ricinoleate se, ricinoleic acid, potassium ricinoleate, sodium ricinoleate, zinc ricinoleate, cetyl ricinoleate, ethyl ricinoleate, glycol ricinoleate, isopropyl ricinoleate, methyl ricinoleate, and octyldodecyl ricinoleate. Int J Toxicol 26:31–77. doi:10.1080/10915810601163939

    Article  Google Scholar 

  • Kinge SS, Crego-Calama M, Reinhoudt DN (2007) Gold nanoparticle assemblies through hydrogen-bonded supramolecular mediators. Langmuir 23:8772–8777. doi:10.1021/la700514u

    Article  CAS  Google Scholar 

  • Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93:144301. doi:10.1103/PhysRevLett.93.144301

    Article  Google Scholar 

  • Kumar SS, Kumar CS, Mathiyarasu J, Phani KL (2007) Stabilized gold nanoparticles by reduction using 3, 4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis. Langmuir 23:3401–3408. doi:10.1021/la063150h

    Article  CAS  Google Scholar 

  • Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photon 1:641–648. doi:10.1038/nphoton.2007.223

    Article  CAS  Google Scholar 

  • Maestro P, Couvreur P, Roux D, Givord D, Dalmon J-A, Bertolini J-C, Aires FJCS (2006) Biology and environment. In: Bréchignac C, Houdy P, Lahmani M (eds) Nanomaterials and nanochemistry. Springer, Berlin

    Google Scholar 

  • Mirkin CA (2000) Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 39:2258–2272. doi:10.1021/ic991123r

    Article  CAS  Google Scholar 

  • Montalti M, Prodi L, Zaccheroni N, Beltrame M, Morotti T, Quici S (2007) Stabilization of terpyridine covered gold nanoparticles by metal ions complexation. New J Chem 31:102–108. doi:10.1039/b600339g

    Article  CAS  Google Scholar 

  • Nascimento CM, Alencar MARC, Chávez-Cerda S, da Silva MGA, Meneghetti MR, Hickmann JM (2006) Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium. J Opt A Pure Appl Opt 8:947–951. doi:10.1088/1464-4258/8/11/003

    Article  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091. doi:10.1016/j.biortech.2005.03.028

    Article  CAS  Google Scholar 

  • Okazaki K, Kiyama T, Hirahara K, Tanaka N, Kuwabata S, Torimoto T (2008) Single-step synthesis of gold–silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chem Commun (Camb) 6:691–693. doi:10.1039/b714761a

    Article  Google Scholar 

  • Richardson HH, Hickman ZN, Govorov AO, Thomas AC, Zhang W, Kordesch ME (2006) Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. Nano Lett 6:783–788. doi:10.1021/nl060105l

    Article  CAS  Google Scholar 

  • Rotstein HG, Tannenbaum R (2002) Cluster coagulation and growth limited by surface interactions with polymers. J Phys Chem B 106:146–151. doi:10.1021/jp012784o

    Article  CAS  Google Scholar 

  • Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778. doi:10.1021/cr010350j

    Article  CAS  Google Scholar 

  • Schrekker HS, Gelesky MA, Stracke MP, Clarissa ML, Schrekker CML, Giovanna Machado G et al (2007) Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles. J Colloid Interface Sci 316:189–195. doi:10.1016/j.jcis.2007.08.018

    Article  CAS  Google Scholar 

  • Shelke NB, Sairam M, Halligudi SB, Aminabhavi TM (2007) Development of transdermal drug-delivery films with castor-oil-based polyurethanes. J Appl Polym Sci 103:779–788. doi:10.1002/app.25070

    Article  CAS  Google Scholar 

  • Sipe JE, Boyd RW (1992) Nonlinear susceptibility of composite optical-materials in the Maxwell Garnett model. Phys Rev A 46:1614–1629. doi:10.1103/PhysRevA.46.1614

    Article  CAS  Google Scholar 

  • Song H-T, Huh Y-M, Kim S, Jun W-W, Suh J-S, Cheon J (2005) Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc 127:9992–9993. doi:10.1021/ja051833y

    Article  CAS  Google Scholar 

  • Souza RF, Alencar MARC, Silva EC, Meneghetti MR, Hickmann JM (2008) Nonlinear optical properties of Au nanoparticles colloidal system: local and nonlocal responses. Appl Phys Lett 92:201902. doi:10.1063/1.2929385

  • Stoeva SI, Smetana AB, Sorensen CM, Klabunde KJ (2007) Gram-scale synthesis of aqueous gold colloids stabilized by various ligands. J Colloid Interface Sci 309:94–98. doi:10.1016/j.jcis.2006.12.064

    Article  CAS  Google Scholar 

  • Suarez PAZ, Meneghetti SMP, Meneghetti MR, Wolf CR (2007) Transformação de triglicerídeos em combustíveis, materiais poliméricos e insumos químicos: algumas aplicações da catálise na oleoquímica. Quim Nova 30:667–676. doi:10.1590/S010040422007000300028

    CAS  Google Scholar 

  • Sun W, Dai Q, Worden JG, Huo Q (2005) Optical limiting of a covalently bonded gold nanoparticle/polylysine hybrid material. J Phys Chem B 109:20854–20857. doi:10.1021/jp055109d

    Article  CAS  Google Scholar 

  • Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM et al (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574. doi:10.1021/nl050928v

    Article  CAS  Google Scholar 

  • Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501. doi:10.1021/nl062901x

    Article  CAS  Google Scholar 

  • Tokareva I, Hutter E (2004) Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and gold films. J Am Chem Soc 126:15784–15789. doi:10.1021/ja046779k

    Article  CAS  Google Scholar 

  • Tsubota S, Haruta M, Kobayashi T, Ueda A, Nakahara Y (1991) Preparation of highly dispersed gold on titanium and magnesium oxide. Stud Surf Sci Catal 63:695–704

    Article  CAS  Google Scholar 

  • Turkevich J (1985) Colloidal gold part II: colour, coagulation, adhesion, alloying and catalytic properties. Gold Bull 18:125–131

    CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) The nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi:10.1039/df9511100055

    Article  Google Scholar 

  • Wu N, Fu L, Aslam M, Wong KC, Dravid VW (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett 4:383–386. doi:10.1021/nl035139x

    Article  CAS  Google Scholar 

  • Yang T, Li Z, Wang L, Guo G, Sun Y (2007) Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir 23:10533–10538. doi:10.1021/la701649z

    Article  CAS  Google Scholar 

  • Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5:21–25. doi:10.1021/nl048547p

    Article  CAS  Google Scholar 

  • Zhang W, Cui X, Yeo B-S, Schmid T, Hafner C, Zenob R (2007) Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. Nano Lett 7:1401–1405. doi:10.1021/nl070616n

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from CAPES, CAPES procad no. 23051, CNPq/MCT, and Pronex/FAPEAL. M.R.M. would like to thank Prof. Dr. J. Dupont of the IQ-UFRGS for use of the facilities to obtain TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Meneghetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, E.C., da Silva, M.G.A., Meneghetti, S.M.P. et al. Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanopart Res 10 (Suppl 1), 201–208 (2008). https://doi.org/10.1007/s11051-008-9483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9483-z

Keywords

Navigation