Skip to main content

Biological and Phytotoxic Impacts of a Nanomaterial

  • Chapter
  • First Online:
Phytotoxicity of Nanoparticles

Abstract

The enhanced utilization of nanoparticles (NPs) in various sectors all over the globe amplified the necessity to explore its effects on environment and biota. Being minute in size, NPs can reach inside the plant cells and might directly induce alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of NPs depend on their chemical and physical properties and may affect physiology and growth of plants as well as may induce production of reactive oxygen species. Many questions regarding the bioavailability of engineered nanoparticles (ENPs) and their uptake by plants in either aerial and/or terrestrial mode of toxicity mechanisms are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Usha Rani P et al (2010) Nano-particles: a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Chakravarthy AK, Chandrashekharaiah SB, Kandakoor A et al (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6:271–281

    Google Scholar 

  • Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57(1):34–39

    Article  CAS  Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA et al (2006) Responses of resting a plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256

    Article  CAS  Google Scholar 

  • Dimkpa C, McLean J, Latta D et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand grown wheat. J Nanopart Res 14(9):1–15

    Article  CAS  Google Scholar 

  • Feng Y, Cui X, He S et al (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 4:9496–9504. https://doi.org/10.1021/es402109n

    Article  CAS  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA et al (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  • Ghosh M, Jana A, Sinha S et al (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Jasim B, Thomas R, Mathew J et al (2016) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447. https://doi.org/10.1016/j.jsps.2016.09.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang HS, Qiu XN, Li GB et al (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33(6):1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Jiang HS, Yin LY, Ren NN et al (2017) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11(2):157–167

    Article  CAS  PubMed  Google Scholar 

  • Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474. https://doi.org/10.1021/es3019397

    Article  PubMed  CAS  Google Scholar 

  • Jyothsna Y, Usha Rani P (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth and plant physiology. Environ Sci Pollut Res 20(12):8636–8648

    Article  CAS  Google Scholar 

  • Kostner B (2001) Evaporation and transpiration from forests in Central Europe relevance of patch-level studies for spatial scaling. Meteorol Atmos Phys 76:69–82

    Article  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1−3):613–621

    Article  CAS  PubMed  Google Scholar 

  • Landa P, Vankova R, Andrlova J et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241−242:55–62

    Article  CAS  PubMed  Google Scholar 

  • Landa P, Cyrusova T, Jerabkova J et al (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil 227:448. https://doi.org/10.1007/s11270-016-3156-9

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B et al (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778

    Article  CAS  Google Scholar 

  • Ma C, Liu H, Guo H et al (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3:1369–1379

    Article  CAS  Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS et al (2014) Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547. https://doi.org/10.1104/pp.113.233650

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J ChemTech Res 3:1494–1500

    CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S et al (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54. https://doi.org/10.1016/j.ecoenv.2012.10.018

    Article  PubMed  CAS  Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213

    Article  CAS  PubMed  Google Scholar 

  • Okupnik A, Pflugmacher S (2016) Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environ Toxicol Chem 35:2859–2866. https://doi.org/10.1002/etc.3469

    Article  PubMed  CAS  Google Scholar 

  • Ovecka M, Lang I, Baluska F et al (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    Article  CAS  PubMed  Google Scholar 

  • Pallavi CM, Srivastava R, Arora S et al (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254. https://doi.org/10.1007/s13205-016-0567-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panacek A, Prucek R, Safarova D et al (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–4979

    Article  CAS  PubMed  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R et al (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12. https://doi.org/10.3389/fenvs.2017.00012

    Article  Google Scholar 

  • Qian H, Peng X, Han X et al (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1955

    Article  CAS  Google Scholar 

  • Rajasekharreddy P, Usha Rani P, Sreedhar B (2010) Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J Nanopart Res 12:1711

    Article  CAS  Google Scholar 

  • Rajasekharreddy P, Usha Rani P, Saidulu M et al (2017) Ultra-small silver nanoparticles induced ROS activated toll-pathway against Staphylococcus aureus disease in silkworm model. Mater Sci Eng C 77:990–1002

    Article  CAS  Google Scholar 

  • Ramsden C, Henry T, Handy R (2013) Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat Toxicol 126:404–413

    Article  CAS  PubMed  Google Scholar 

  • Reddy AM, Kumar SG, Jyonthsna kumari G et al (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengal gram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  PubMed  Google Scholar 

  • Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH et al (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Siva C, Kumar MS (2015) Pesticidal activity of eco-friendly synthesized silver nanoparticles using Aristolochia indica extract against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Int J Adv Sci Tech Res 2:197–226

    Google Scholar 

  • Song JY, Kim BS (2008) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  CAS  PubMed  Google Scholar 

  • Song U, Jun HJ, Waldman B, Roh JK et al (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on Tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  CAS  PubMed  Google Scholar 

  • Song G, Hou W, Gao Y et al (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3. https://doi.org/10.1186/s40529-016-0118-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tenhunen JD, Mauser W (2001) Ecological studies. In: Lenz R (ed) Ecosystems approaches to landscape management in Central Europe, vol 147. Springer, Berlin, p 652

    Chapter  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300. https://doi.org/10.1038/nnano.2007.108

    Article  PubMed  CAS  Google Scholar 

  • Tripathi DK, Singh S, Srivastava PK et al (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177. https://doi.org/10.1016/j.plaphy.2016.06.015

    Article  PubMed  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2005) Nanotechnology white paper external review draft. Available from: https://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005

  • Usha Rani P, Rajasekharreddy P (2011) Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Asp 389(1–3):188–194

    Article  CAS  Google Scholar 

  • Usha Rani P, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Sci 87(1):191–200

    Article  Google Scholar 

  • Usha Rani P, Jyothsna Y, Karthik Sharma L et al (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38(2):1–9

    Google Scholar 

  • Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeter Biodegr 60:96–102

    Article  CAS  Google Scholar 

  • Wan R, Mo Y, Feng L et al (2012) DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25(7):1402–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Sun C, Gao S (2001) Validation of germination rate and root elongation as an indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44:1711–1721

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li N, Zhao J et al (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25(7):1512–1521

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Liu X, Shi Z et al (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants – a soil microcosm experiment. Chemosphere 147:88–97. https://doi.org/10.1016/j.chemosphere.2015.12.076

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao FJ et al (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712. https://doi.org/10.1016/j.tplants.2016.04.005

    Article  PubMed  CAS  Google Scholar 

  • Zhang HY, Jiang YN, He ZY et al (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wang Z, Dai Y et al (2013) Mitigation of CuO nanoparticle induced bacterial membrane damage by dissolved organic matter. Water Res 47:4169–4178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathipati, U.R., Kanuparthi, P.L. (2018). Biological and Phytotoxic Impacts of a Nanomaterial. In: Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A. (eds) Phytotoxicity of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-76708-6_9

Download citation

Publish with us

Policies and ethics