Skip to main content

Metabolic Complications, Nutritional Deficiencies, and Medication Management Following Metabolic Surgery

  • Chapter
  • First Online:
Complications in Bariatric Surgery

Abstract

Metabolic surgery has emerged as the preferred sustainable treatment for the disease of obesity and its formidable health comorbidities. This evolution has resulted from major advances in surgical quality care including minimally invasive techniques and the introduction of accredited multidisciplinary centers of excellence. Multidisciplinary care including obesity medicine specialists, certified bariatric nurses, dietitians, and behavioral medicine professionals has improved perioperative care and helped to identify many early and late metabolic as well as nutritional complications of these procedures.

The prompt recognition of nutritional and metabolic complications and the establishment of definitive guidelines for their prevention constitute an unmet need and a major quality improvement challenge for the future of metabolic surgery. The purpose of this chapter is to provide current information about the pathogenesis, management, and strategies for prevention of the metabolic and nutritional complications of metabolic surgery as well as recommendations for proper medication management during surgical weight loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehaffey J, Michaels A, Mullen M, Meneveau M, Pender J, Hallowell P. Patient travel for bariatric surgery: does distance matter? Surg Obes Rel Dis. 2016. (in press) Dec 28. pii: S1550-7289(16)30889-9. https://doi.org/10.1016/j.soard.2016.12.025.

  2. Gregory NS. The effects of bariatric surgery on bone metabolism. Endocrinol Metab Clin N Am. 2017;46(1):105–16.

    Article  Google Scholar 

  3. Wortsman J, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    Article  CAS  Google Scholar 

  4. Bell NH, et al. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Investig. 1985;76(1):370.

    Article  CAS  Google Scholar 

  5. Bredella MA, et al. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone. 2017;95:85–90.

    Article  Google Scholar 

  6. Olbers T, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244(5):715–22.

    Article  Google Scholar 

  7. Carrasco F, et al. Changes in bone mineral density after sleeve gastrectomy or gastric bypass: relationships with variations in vitamin D, ghrelin, and adiponectin levels. Obes Surg. 2014;24(6):877–84.

    Article  Google Scholar 

  8. Hsin M-C, et al. A case-matched study of the differences in bone mineral density 1 year after 3 different bariatric procedures. Surg Obes Relat Dis. 2015;11(1):181–5.

    Article  Google Scholar 

  9. Maghrabi AH, et al. Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy. Obesity. 2015;23(12):2344–8.

    Article  Google Scholar 

  10. Muschitz C, et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metabol. 2014;100(3):891–901.

    Article  Google Scholar 

  11. Nogués X, et al. Bone mass loss after sleeve gastrectomy: a prospective comparative study with gastric bypass. Cirugía Española (English Edition). 2010;88(2):103–9.

    Article  Google Scholar 

  12. Vilarrasa N, et al. Effect of bariatric surgery on bone mineral density: comparison of gastric bypass and sleeve gastrectomy. Obes Surg. 2013;23(12):2086–91.

    Article  Google Scholar 

  13. Kushner RF, Still CD. Nutrition and bariatric surgery. CRC Press, Boca Raton, London, New York; 2014.

    Book  Google Scholar 

  14. Ohlsson C, et al. Growth hormone and bone 1. Endocr Rev. 1998;19(1):55–79.

    CAS  PubMed  Google Scholar 

  15. Fukushima N, et al. Ghrelin directly regulates bone formation. J Bone Miner Res. 2005;20(5):790–8.

    Article  CAS  Google Scholar 

  16. Tsukiyama K, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol. 2006;20(7):1644–51.

    Article  CAS  Google Scholar 

  17. Rao RS, Kini S. GIP and bariatric surgery. Obes Surg. 2011;21(2):244–52.

    Article  Google Scholar 

  18. Dirksen C, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55(7):1890–901.

    Article  CAS  Google Scholar 

  19. Carrasco F, et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg. 2009;19(1):41–6.

    Article  Google Scholar 

  20. Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 2006;4(5):341–8.

    Article  CAS  Google Scholar 

  21. Biagioni MFG, et al. Bariatric Roux-En-Y gastric bypass surgery: adipocyte proteins involved in increased bone remodeling in humans. Obes Surg. 2017;27(7):1789–96.

    Article  Google Scholar 

  22. Balsa JA, et al. The role of serum osteoprotegerin and receptor–activator of nuclear factor-κB ligand in metabolic bone disease of women after obesity surgery. J Bone Miner Metab. 2016;34(6):655–61.

    Article  CAS  Google Scholar 

  23. Organization, W.H. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]. 1994.

    Google Scholar 

  24. Cosman F, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    Article  CAS  Google Scholar 

  25. Mechanick JI, et al. American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & bariatric surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Surg Obes Relat Dis. 2008;4(5):S109–84.

    Article  Google Scholar 

  26. Parrott J, et al. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: micronutrients. Surgery for Obesity and Related Diseases; 2017.

    Article  Google Scholar 

  27. Mechanick JI, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity. 2013;21:S1.

    Article  CAS  Google Scholar 

  28. Espino-Grosso PM, Canales BK. Kidney stones after bariatric surgery: risk assessment and mitigation. Bariatric Surg Pract Patient Care. 2017;12(1):3–9.

    Article  Google Scholar 

  29. Chang AR, Grams ME, Navaneethan SD. Bariatric surgery and kidney-related outcomes. Kidney Int Rep. 2017;2(2):261–70.

    Article  Google Scholar 

  30. Duffey BG, et al. Roux-en-Y gastric bypass is associated with early increased risk factors for development of calcium oxalate nephrolithiasis. J Am Coll Surg. 2008;206(6):1145–53.

    Article  Google Scholar 

  31. Hatch M, et al. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006;69(4):691–8.

    Article  CAS  Google Scholar 

  32. Borghi L, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346(2):77–84.

    Article  CAS  Google Scholar 

  33. El-Nahas AR, et al. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol. 2007;51(6):1688–94.

    Article  Google Scholar 

  34. Kazemi A, Frazier T, Cave M. Micronutrient-related neurologic complications following bariatric surgery. Curr Gastroenterol Rep. 2010;12(4):288–95.

    Article  Google Scholar 

  35. Clements RH, et al. Incidence of vitamin deficiency after laparoscopic Roux-en-Y gastric bypass in a university hospital setting. Am Surg. 2006;72(12):1196–204.

    PubMed  Google Scholar 

  36. Thomson AD, Marshall EJ. The natural history and pathophysiology of Wernicke’s encephalopathy and Korsakoff's psychosis. Alcohol Alcohol. 2006;41(2):151–8.

    Article  CAS  Google Scholar 

  37. Green R, Kinsella LJ. Current concepts in the diagnosis of cobalamin deficiency. Neurology. 1995;45(8):1435–40.

    Article  CAS  Google Scholar 

  38. Amaral JF, et al. Prospective hematologic evaluation of gastric exclusion surgery for morbid obesity. Ann Surg. 1985;201(2):186.

    Article  CAS  Google Scholar 

  39. Provenzale D, et al. Evidence for diminished B12 absorption after gastric bypass: oral supplementation does not prevent low plasma B12 levels in bypass patients. J Am Coll Nutr. 1992;11(1):29–35.

    Article  CAS  Google Scholar 

  40. Nagarur A, Fenves AZ. Late presentation of fatal hyperammonemic encephalopathy after Roux-en-Y gastric bypass. Proc (Bayl Univ Med Cent). 2017;30(1):41.

    Article  Google Scholar 

  41. Estrella J, et al. Hyperammonemic encephalopathy complicating bariatric surgery: a case study and review of the literature. Surg Obes Relat Dis. 2014;10(3):e35–8.

    Article  Google Scholar 

  42. Longmuir R, Lee AG, Rouleau J. Visual loss due to Wernicke syndrome following gastric bypass. in Seminars in ophthalmology. Taylor & Francis, Boca Raton, London, New York; 2007.

    Google Scholar 

  43. Zuccoli G, Motti L. Atypical Wernicke's encephalopathy showing lesions in the cranial nerve nuclei and cerebellum. J Neuroimaging. 2008;18(2):194–7.

    Article  Google Scholar 

  44. Carmel R. Current concepts in cobalamin deficiency. Annu Rev Med. 2000;51(1):357–75.

    Article  CAS  Google Scholar 

  45. Solomon LR. Cobalamin-responsive disorders in the ambulatory care setting: unreliability of cobalamin, methylmalonic acid, and homocysteine testing. Blood. 2005;105(3):978–85.

    Article  CAS  Google Scholar 

  46. Saperstein DS, et al. Challenges in the identification of cobalamin-deficiency polyneuropathy. Arch Neurol. 2003;60(9):1296–301.

    Article  Google Scholar 

  47. Savage DG, et al. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med. 1994;96(3):239–46.

    Article  CAS  Google Scholar 

  48. Service G, Thompson G, Service F, Andrews J, Collazo-Clavell M, Lloyd R. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric bypass surgery. New Engl J Med. 2005;353:249–54.

    Article  Google Scholar 

  49. Meier J, Butler A, Galasso R, Butler P. Hyperinsulinemic hypoglycemia after gastric bypass surgery is not accompanied by islet hyperplasia or increased β-cell turnover. Diabetes Care. 2006;29:1554–9.

    Article  Google Scholar 

  50. Shantavasinkul P, Torquati A, Corsino L. Post gastric bypass hypoglycaemia: a review. Clin Endocrinol. 2016;85:3–9.

    Article  CAS  Google Scholar 

  51. Abrahamsson N, Engstrom B, Sundbom M, Karlsson F. Hypoglycemia in everyday life after gastric bypass and duodenal switch. Eur J Endocrinol Eur Fed Endocr Soc. 2014;173:91–100.

    Article  Google Scholar 

  52. Lee C, Clark J, Schweitzer M, Magnuson T, Steele K, Koerner O, Brown T. Prevalence of and risk factors for hypoglycemia symptoms after gastric bypass and sleeve gastrectomy. Obesity. 2015;23:1079–84.

    Article  Google Scholar 

  53. Marsk R, Jonas E, Rasmussen F, Naslund E. Nationwide cohort study of post-gastric bypass Hypoglycemia including 5040 patients undergoing surgery for obesity in 1986–2006 in Sweden. Diabetologia. 2010;53:2307–11.

    Article  CAS  Google Scholar 

  54. Sarwar H, Chapman W, Pender J, Ivanescu A, Drake A, Pories W, Dar M. Hypoglycemia after Roux-en-Y gastric bypass: the BOLD experience. Obes Surg. 2014;24:1120–4.

    Article  Google Scholar 

  55. Lee C, Wood G, Lazo M, Brown T, Clark J, Still C, Benotti P. Risk of post-gastric bypass hypoglycemia in nondiabetic individuals: a single center experience. Obesity. 2016;24:1342–8.

    Article  CAS  Google Scholar 

  56. Seaquist E, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, Heller S, Rodriguez H, Rosenzweig J, Vigersky R. Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care. 2013;36:1384–95.

    Article  CAS  Google Scholar 

  57. Kellog T, Bantle J, Leslie D, Redmond J, Slusarek B, Swan T, Buchwald H, Ikramuddin S. Postgastric bypass hyperinsulinemic hypoglycemia syndrome: characterization and response to a modified diet. Surg Obese Rel Dis. 2008;4:492–9.

    Article  Google Scholar 

  58. Vella A, Service J. Incretin hypersecretion in post-gastric bypass hypoglycemia-primary problem or red herring. J Clin Endocrinol Metab. 2007;92:4563–5.

    Article  CAS  Google Scholar 

  59. Mordes J, Alonso L. Evaluation, medical therapy, and course of adult persistent hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass surgery: a case series. Encocrin Pract. 2015;21:237–46.

    Article  Google Scholar 

  60. Pigeyre M, Vaurs C, Raverdy V, Hnaire H, Ritz P, Pattou F. Increased risk of OGTT-induced hypoglycemia after gastric bypass in severely obese patients with normal glucose tolerance. Surg Obes Rel Dis. 2015;11:573–7.

    Article  Google Scholar 

  61. Goldfine A, Mun E, Devine E, Bernier R, Baz-Hect M, Jones D, Schneider B, Holst J, Patti M. Patients with Neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory Response to a mixed meal. J Clin Endocrinol Metab. 2007;92:4678–85.

    Article  CAS  Google Scholar 

  62. Salehi M, Gastaldelli A, D’Alessio D. Altered islet function and insulin clearance cause hyperinsulinemia in gastric bypass patients with symptoms of postprandial hypoglycemia. J Clin Endocrinol Metab. 2008;99:2008–17.

    Article  Google Scholar 

  63. McLaughlin T, Peck M, Deacon C. Reversible hyperinsulinemic hypoglycemia after gastric bypass: a consequence of altered nutrient delivery. J Clin Endocrinol Metab. 2010;95:1851–5.

    Article  CAS  Google Scholar 

  64. Frnkhouser S, Ahmad A, Perilli G, Quintana B, Vengrove M. Post-gastric bypass hypoglycemia successfully treated with alpha-glucosidase inhibitor therapy. Endocr Pract. 2013;19:511–4.

    Article  Google Scholar 

  65. Spanakis E, Gragnoli C. Successful medical management of status post-Roux-En-Y Gastric bypass Hyperinsulinemic hypoglycemia. Obes Surg. 2009;19:1333–4.

    Article  Google Scholar 

  66. Moreira R, Moreira R, Machado N, Goncalves T, Coutinho W. Post-prandial hypoglycemia after bariatric surgery: pharmacological treatment with verapamil and acarbose. Obes Surg. 2008;18:1618–21.

    Article  Google Scholar 

  67. Myint K, Greenfield J, Farooqi I, Henning E, Holst J, Finer N. Prolonged Suddessful therapy for hyperinsulinemic hypoglycemia after gastric bypass: the pathophysical role of GLP-1 and its response to a somatostatin analogue. Eur J Endocrinol. 2012;166:951–5.

    Article  CAS  Google Scholar 

  68. Salehi M, Gastaldelli A, D’Alessio D. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology. 2014;46:669–80.

    Article  Google Scholar 

  69. Vanderveen K, Grant C, Thompson G, Farley D, Richards M, Vella A, Vollrath B, Service J. Outcomes and quality of life after partial pancreatectomy for noninsulinoma pancreatogenous hypoglycemia from diffuse islet cell disease. Surgery. 2010;148:1237–46.

    Article  Google Scholar 

  70. Ohrstrom C, Worm D, Hansen D. Postprandial hyperinsulinemic hypoglycemia after Roux-en-Y gastric bypass: An Update. Surg Obes Rel Dis. https://doi.org/10.1016/j.soard.2016.09.025.

  71. Eisenberg D, Azagury D, Ghiassi S, Grover B, Kim J. ASMBS position statement on postprandial hyperinsulinemic hypoglycemia after bariatric surgery. Surg Obes Rel Dis. 2017;13:371–378. Service G, Thompson G, Service F, Andrews J, Collazo-Clavell M, Lloyd R. Hyperinsulinemic Hypoglycemia with Nesidioblastosis after Gastric Bypass Surgery. New Engl J Med. 2005;353:249–54.

    Article  Google Scholar 

  72. Bal B, Finelli F, Shope T, Koch T. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8:544–56.

    Article  CAS  Google Scholar 

  73. Mueller C. The ASPEN adult nutrition support core curriculum. 2nd edn. In: Clark SF, editor. Vitamins and trace elements. American Society for Parenteral and Enteral Nutrition. 2012; 8. p. 121–48.

    Google Scholar 

  74. Levinson R, Silverman JB, Catella JG, Rybak I, Jolin H. Isom K pharmacotherapy prevention and management of nutritional deficiencies post roux-en-Y gastric bypass. Obesity Surg. 2013;23:992.

    Article  Google Scholar 

  75. Mueller C. The ASPEN adult nutrition support core curriculum, 2nd edn. In: Colaizzo-Anas T, editor. CDN nutrient intake, digestion, absorption, and excretion. American Society for Parenteral and Enteral Nutrition. 2012;1. p. 16.

    Google Scholar 

  76. Moize V, Andreu A, Rodriguez L, Flores L, Ibarzabal A, Lacey A, et al. Protein intake and lean tissue mass retention following bariatric surgery. Clin Nut. 2013;32:550–5.

    Article  CAS  Google Scholar 

  77. Mueller C. The ASPEN adult nutrition support core curriculum, 2nd edn. In: Jensen GL, Hsiao PY, Wheeler D, editors. Nutrition screening and assessment. American Society for Parenteral and Enteral Nutrition. 2012; 9. p. 158,163.

    Google Scholar 

  78. Benotti P. Patient preparation for bariatric surgery New York: Springer; 2014. Chapter 7.

    Book  Google Scholar 

  79. Ross AC, Caballero B, Cousins RJ, Ticker KL, Ziegler TR. **Modern nutrition in health and disease. 11th edn. In: Heimburger DC, editor. Clinical manifestations of nutrient deficiencies and toxicities. Lipppincot, Williams and Wilkins. 2014; 57. p. 757–66.

    Google Scholar 

  80. Parrott J, Frank L, Rabena R, Craggs-Dino L, Isom K, Greiman L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients. Surg Obes Rel Dis. 2017;13:727–41.

    Article  Google Scholar 

  81. Heber D, Greenway F, Kaplan L, Livingston E, Salvador J, Still C. Endocrine and nutritional management of the post-bariatric surgery patient: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2010;95:4823–43.

    Article  CAS  Google Scholar 

  82. Stabler S. Vitamin B12 deficiency. New Engl J Med. 2013;368:149–60.

    Article  CAS  Google Scholar 

  83. Hwang C, Ross V, Mahadevan U. Inflammatory bowel disease, micronutrient deficiencies. Inflamm Bowel Dis A Zinc. 2012;18(10):1966.

    Google Scholar 

  84. Toh S, Zaarshenas N, Jorgensen J. Prevalence of nutrient deficiencies in bariatric patients. Surg Obes Rel Dis. 2009;25:1150–6.

    CAS  Google Scholar 

  85. Valentino D, Sriram K, Shankar P. Update on micronutrients in bariatric surgery. Curr Opin Clin Nutr Metab Care. 2011;14:635–41.

    Article  CAS  Google Scholar 

  86. Dolan K, Hatzifotis M, Newbury L, Lowe N, Fielding G. A clinical and nutritional comparison of biliopancreatic diversion with and without duodenal switch. Ann Surg. 2004;240:51–6.

    Article  Google Scholar 

  87. Bacci V, Silecchia G. Vitamin D status and supplementation before and after bariatric surgery. Expert Rev Gastroenteiol Hepatol. 2010;4:781–94.

    Article  CAS  Google Scholar 

  88. Bronner F. Mechanisms of intestinal calcium absorption. J Cell Biol. 2003;88:387–93.

    CAS  Google Scholar 

  89. Homan J, Betzel B, Aarts E, Dogan K, van Laarhoven K, Janssen I, Berends R. Vitamin and mineral deficiencies after biliopancreatic diversion and biliopancreatic diversion with duodenal switch- the rule rather than the exception. Obes Surg. 2015;25:1626–32.

    Article  Google Scholar 

  90. Slater G, Ren C, Siegel N, Williams T, Barr D, Wolfe B, Dolan K, Fielding G. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8:48–55.

    Article  Google Scholar 

  91. Ruz M, Carrasco F, Rojas P, Codosceo J, Inostroza J, Basfi-fer K, Valencia A, Csendes A, Papapietro K, Pizarro F, Olivares M, Westcott J, Hambridge M, Krebs N. Heme- and Nonheme-iron absorption nd iron status 12 mo after sleeve gastrectomy and roux-en-Y gastric bypass in morbidly obese women. Am J Clin Nut. 2012;96:810–7.

    Article  CAS  Google Scholar 

  92. Love A, Billet H. Obesity, bariatric surgery and iron deficiency: true, true. True and Related Am J Hematol. 2008;88:403–9.

    Article  Google Scholar 

  93. Monaco-Ferreira DV, Leandro-Merhi V. Status of iron metabolism 10 years after Roux-en-Y gastric bypass. Obes Surg. 2017. https://doi.org/10.1007/xs11695-017-2582-0.

  94. Salle A, Demarsy D, Poirier A, Lelievre B, Top O, Guilloteau G, et al. Zinc deficiency: a frequent and underestimated complication after bariatric surgery. Obes Surg. 2010;20:1660–70.

    Article  Google Scholar 

  95. Wood GC, Chu X, Manney C, Sgtrodel W, Petrick A, Gabrielsen J, et al. An electronic health record-enabled obesity database. BMC Med Inform Decis Mak. 2012;12:45. https://doi.org/10.1186/1472-6947-12-45.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Padwal R, Brocks D, Sharma AM. A systemic review of drug absorption following bariatric surgery and its theoretical implications. Obes Rev. 2010;11(1):41–50.

    Article  CAS  Google Scholar 

  97. Miller AD, Smith KM. Medication and nutrient administration considerations after bariatric surgery. Am J Health Syst Pharm. 2006;63(19):1852–7.

    Article  Google Scholar 

  98. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Article  CAS  Google Scholar 

  99. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  Google Scholar 

  100. Neal B, Perkovic V, Mahaffey KW, on behalf of the CANVAS Program Collaborative Group, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644–57. [Epub ahead of print].

    Article  CAS  Google Scholar 

  101. Milone M, Lupoli R, Maietta P, Di Minno A, et al. Lipid profile changes in patients undergoing bariatric surgery: a comparative study between sleeve gastrectomy and mini-gastric bypass. IJOS. 2015;14:28–32.

    Google Scholar 

  102. Monson M, Jackson M. Pregnancy after bariatric surgery. Clin Obstet Gynecol. 2016;59(1):158–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Still .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Still, C.D., Benotti, P., Hangan, D., Zubair, F. (2018). Metabolic Complications, Nutritional Deficiencies, and Medication Management Following Metabolic Surgery. In: Camacho, D., Zundel, N. (eds) Complications in Bariatric Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-75841-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75841-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75840-4

  • Online ISBN: 978-3-319-75841-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics