Skip to main content
Log in

Bariatric Roux-En-Y Gastric Bypass Surgery: Adipocyte Proteins Involved in Increased Bone Remodeling in Humans

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

Bariatric surgery has been associated with bone remodeling changes. The action of adipokines on the expression of receptor activator of nuclear factor kappa β ligand (RANKL) and osteoprotegerin (OPG) and on an increase in sclerostin could be related to these changes.

Materials and Methods

This study aimed to assess the repercussions of weight loss, fat mass (FM), and fat-free mass (FFM) loss and biochemical and hormonal changes on bone remodeling markers after Roux-en-Y gastric bypass (RYGB). Anthropometric data, parathyroid hormone (PTH), bone-specific alkaline phosphatase (BSAP), collagen type 1 C-telopeptide (CTX), 25-hydroxy vitamin D (25-OH-VitD), leptin, adiponectin, RANKL, OPG, and sclerostin of 30 menstruating women were measured preoperatively (Pre), and 3, 12, and 24 months (m) after RYGB.

Results

Leptin (34.4 (14.7; 51.9) vs. 22.5 (1.9; 52.7) ng/mL) and OPG (3.6 (1.1; 11.5) vs. 3.4 (1.5; 6) pmol/L) decreased, and adiponectin (7.4 (1.7; 18.4) vs. 13.8 (3.0; 34.6) μg/mL), CTX (0.2 (0.1; 2.2) vs. 0.6 (0.4; 6.0) ng/mL), RANKL (0.1 (0.0; 0.5) vs. 0.3 (0.0; 2.0) pmol/L), and sclerostin (21.7 (3.2; 75.1) vs. 34.8 (6.4; 80.5) pmol/L) increased after 3 m. BSAP increased after 12 m (10.1 (5.4; 18.9) vs. 13.9 (6.9; 30.2) μg/mL) (p < 0.005). CTX correlated positively with adiponectin at 24 m and inversely with leptin Pre; OPG at 3 m; weight, FM, FFM, and leptin at 24 m. RANKL correlated directly with weight at 3 m. Sclerostin correlated inversely with weight Pre and FM at 3 m. BSAP correlated negatively with 25-OH-VitD at 12 m, and positively with PTH at 24 m.

Conclusions

RYGB induced weight loss, and biochemical, hormonal, and body composition changes are associated with higher bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization. Global status report on non communicable diseases 2014. Disponível em:< http://www.who.int/nmh/publications/ncd-status-report-2014/en/>. Access in: mar. 2016.

  2. Mechanick JI, Kushner RF, Sugerman HJ, et al. American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Endocr Pract. 2008;14(Suppl 1):1–83.

    Article  PubMed  Google Scholar 

  3. Ricci C, Gaeta M, Rausa E, et al. Early impact f bariatric surgery on type II diabetes, hipertension, and hyperlipidemia: a systematic review, meta-analysis and meta-regression on 6.587 patients. Obes Surg. 2014;24:522–8.

    Article  PubMed  Google Scholar 

  4. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36.

    Article  PubMed  Google Scholar 

  5. Stemmer K, Bielohuby M, Grayson BE, et al. Roux-en-Y gastric bypass surgery but not vertical sleeve gastrectomy decreases bone mass in male rats. Endocrinology. 2013;154:2015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stein EM, Silverberg SJ. Bone loss after bariatric surgery: causes. Consequences and Management Lancet Diabetes Endocrinol. 2014;2(2):165–74.

    Article  PubMed  Google Scholar 

  7. Yu EW, Bouxsein ML, Putman MS, et al. Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab. 2015;100(4):1452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu C, Wu D, Zhang J, et al. Changes in bone metabolism in morbidly obese patients after bariatric surgery: a meta-analysis. Obes Surg. 2016;26(1):91–7.

    Article  PubMed  Google Scholar 

  9. Yu EW. Bone metabolism after bariatric surgery. J Bone Miner Res. 2014;29(7):1507–18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karefylakis C, Näslund I, Edholm D, et al. Vitamin D status 10 years after primary gastric bypass: gravely high prevalence of hypovitaminosis D and raised PTH levels. Obes Surg. 2014;24(3):343–8.

    Article  PubMed  Google Scholar 

  11. Hage MP, El-Hajj FG. Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporosis Int. 2014;25:423–39.

    Article  CAS  Google Scholar 

  12. Butte NF, Brandt ML, Wong WW, et al. Energetic adaptations persist after bariatric surgery in severely obese adolescents. Obesity (Silver Spring). 2015;23(3):591–601.

    Article  CAS  PubMed Central  Google Scholar 

  13. Luo XH, Guo LJ, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblastos through the MAPK signalling pathway. J Bone Miner Res. 2006;21:1648–56.

    Article  CAS  PubMed  Google Scholar 

  14. Nakamichi Y, Udagawa N, Kobayashi Y, et al. Osteoprotegerin reduces the serum level of receptor activator of NF-ΚB ligand derived from osteoblasts. J Immunol. 2007;178:192–200.

    Article  CAS  PubMed  Google Scholar 

  15. Elissondo N, Rosso LG, Maidana P, et al. Adiponectina: una adipocitoquina con múltiples funciones protectoras. Acta Bioquím Clín Latinoam. 2008;42(1):17–33.

    CAS  Google Scholar 

  16. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kanazawa I. Adiponectin in metabolic bone disease. Curr Med Chem. 2012;19(32):5481–92.

    Article  CAS  PubMed  Google Scholar 

  18. Hogan SL. The effects of weight loss on calcium and bone. Crit Care Nurs Q. 2005;28(3):269–75.

    Article  PubMed  Google Scholar 

  19. Grethen E, Hill KM, Jones R, et al. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab. 2012;97(5):1655–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muschitz C, Kocijan R, Marterer C, et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metab. 2015;100(3):891–901.

    Article  CAS  PubMed  Google Scholar 

  21. Wijenayaka AR, Kogawa M, Lim HP, et al. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6:e25900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Atkins GJ, Rowe PS, Lim HP, et al. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res. 2011;26:1425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moester MJC, Papapoulos SE, Löwik CWGM, et al. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010;87(2):99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewiecki EM. Sclerostin: a novel target for intervention in the treatment of osteoporosis. Discov Med. 2011;12(65):263–73.

    PubMed  Google Scholar 

  25. Dovjak P, Dorfer S, Föger-Samwald U, et al. Serum levels of sclerostin and dickkopf-1: effects of age, gender and fracture status. Gerontology. 2014;60:493–501.

    Article  CAS  PubMed  Google Scholar 

  26. Eriksen EF. Commentary on sclerostin deficiency is linked to altered bone composition. J Bone Miner Res. 2014;29(10):2141–3.

    Article  PubMed  Google Scholar 

  27. Fleischer J, Stein EM, Bessler M, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. 2008;93(10):3735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gannagé-Yared MH, Yaghi C, Habre B, et al. Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol. 2008;158(3):353–9.

    Article  PubMed  Google Scholar 

  29. Wroblewski E, Swidnicka-Siergiejko A, Hady HR, et al. Variation in blood levels of hormones in obese patients following weight reduction induced by endoscopic and surgical bariatric therapies. Cytokine. 2016;77:56–62.

    Article  CAS  PubMed  Google Scholar 

  30. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract. 2013;19(2):337–72.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Viégas M, Vasconcelos RS, Neves AP, et al. Bariatric surgery and bone metabolism: a systematic review. Arq Bras Endocrinol Metabol. 2010;54(2):158–63.

    Article  PubMed  Google Scholar 

  32. Vasconcelos RS, Viégas M, Marques TF, et al. Factors associated with secondary hyperparathyroidism in premenopausal women undergoing Roux-en-Y gastric bypass for the treatment of obesity. Arq Bras Endocrinol Metabol. 2010;54(2):233–8.

    Article  PubMed  Google Scholar 

  33. Williams SE. Metabolic bone disease in the bariatric surgery patient. J Obes. 2011;2011:634614.

    Article  PubMed  Google Scholar 

  34. Carrasco F, Basfi-fer K, Rpjas P, et al. Changes in bone mineral density after sleeve gastrectomy or gastric bypass: relationships with variations in vitamin D, ghrelin, and adiponectin levels. Obes Surg. 2014;24:877–84.

    Article  PubMed  Google Scholar 

  35. Register TC, Divers J, Bowden DW, et al. Relationships between serum adiponectin and bone density, adiposity and calcified atherosclerotic plaque in the African American-Diabetes Heart Study. J Clin Endocrinol Metab. 2013 May;98(5):1916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balsa JA, Lafuente C, Gómez-Martín JM, et al. The role of serum osteoprotegerin and receptor–activator of nuclear factor-κB ligand in metabolic bone disease of women after obesity surgery. J Bone Miner Metab. 2015;1-7

  37. Elias E, Casselbrant A, Werling M, et al. Bone mineral density and expression of vitamin D receptor-dependent calcium uptake mechanisms in the proximal small intestine after bariatric surgery. Br J Surg. 2014;101(12):1566–75. doi:10.1002/bjs.9626.

    Article  CAS  PubMed  Google Scholar 

  38. Bruno C, Fulford AD, Potts JR, et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab. 2010;95(1):159–66. doi:10.1210/jc.2009-0265.

    Article  CAS  PubMed  Google Scholar 

  39. Biagioni MFG, Mendes AL, Nogueira CR, et al. Weight-reducing gastroplasty with Roux-en-Y gastric bypass: impact on vitamin D status and bone remodeling markers. Metab Syndr Relat Disord. 2014;12(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  40. Oshima K, Nampei A, Matsuda M, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005;331(2):520–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lenchik L, Register TC, Hsu FC, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33(4):646–51.

    Article  CAS  PubMed  Google Scholar 

  42. Aguirre L, Napoli N, Waters D, et al. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J Clin Endocrinol Metab. 2014;99(9):3290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Naot D, Cornish J. Cytokines and hormones that contribute to the positive association between fat and bone. Front Endocrinol. 2014;5:70.

    Article  Google Scholar 

  44. Carrasco F, Ruz M, Rojas P, et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg. 2009;19(1):41–6.

    Article  PubMed  Google Scholar 

  45. Bruno C, Fulford AD, Potts JR, et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab. 2010;95:159–66.

    Article  CAS  PubMed  Google Scholar 

  46. Prado WL, Piano A, Lazaretti-Castro M, et al. Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents. J Bone Miner Metab. 2009;27:613–9.

    Article  PubMed  Google Scholar 

  47. Thomas T, Burguera B. Is leptin the link between fat and bone mass? J Bone Miner Res. 2002;17:1563–9.

    Article  CAS  PubMed  Google Scholar 

  48. Walicka M, Czerwińska E, Tałałaj M, et al. Influence of weight reduction on leptin concentration and bone mineral density in patients with morbid obesity before and 6 months after bariatric surgery. Endokrynologia Polska. 2009;60(2):97–102.

    CAS  PubMed  Google Scholar 

  49. Mohiti-Ardekani J, Soleymani-Salehabadi H, et al. Relationships between serum adipocyte hormones (adiponectin, leptin, resistin), bone mineral density and bone metabolic markers in osteoporosis patients. J Bone Miner Metab. 2014;32(4):400–4.

    Article  CAS  PubMed  Google Scholar 

  50. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42(4):606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang R, Oyajobi BO, Harris SE, et al. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone. 2013;52(1):145–56.

    Article  CAS  PubMed  Google Scholar 

  52. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941–6.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Lam KS, Xu JY, et al. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem. 2005;280:18341–7.

    Article  CAS  PubMed  Google Scholar 

  54. Schoenau E. Bone mass increase in puberty: what makes it happen? Horm Res Paediatr. 2006;65(2):2–10.

    Article  CAS  Google Scholar 

  55. Frost HM. Bone “mass” and the “mechanostat”. A proposal Anat Rec. 1987;219:1–9.

    Article  CAS  PubMed  Google Scholar 

  56. Van Bezooijen RL, Svensson JP, Eefting D, et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res. 2007;22(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz AV, Johnson KC, Kahn SE, et al. Effect of 1 year of an intentional weight loss intervention on bone mineral density in type 2 diabetes: results from the look AHEAD randomized trial. J Bone Miner Res. 2012;27(3):619–27.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bellido T. Summary—osteocyte control of bone formation via Sost/sclerostin. J Musculoskelet Neuronal Interact. 2006;6(4):360–3.

    Google Scholar 

  59. Granado-Lorencio F, Simal-Antón A, Salazar-Mosteiro J, et al. Time-course changes in bone turnover markers and fat-soluble vitamins after obesity surgery. Obes Surg. 2010;20:1524–9.

    Article  PubMed  Google Scholar 

  60. Villareal RA, Sadler C, Napoli N, et al. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. Bone Miner Res. 2012;27(5):1215–21.

    Article  Google Scholar 

  61. Muschitz C, Kocijan R, Haschka J, et al. The impact of vitamin D, calcium, protein supplementation, and physical exercise on bone metabolism after bariatric surgery: the BABS study. J Bone Miner Res. 2016;31(3):672–82.

    Article  CAS  PubMed  Google Scholar 

  62. Deitel M, Greenstein R. Editorial: recommendations for reporting weight loss. Obes Surg. 2003;13:159–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process number 2009/50169-6. The authors gratefully acknowledge the statistical support of Dr HRC Nunes and are grateful to the surgeons and nursing staff of the Surgery Department, Clinical Hospital, FMB, Unesp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fernanda G Biagioni.

Ethics declarations

The study was approved by the local Research Ethics Committee (protocol number 3710-2010) and was conducted according to the principles of the 1964 Helsinki Declaration. Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biagioni, M.F.G., Mendes, A.L., Nogueira, C.R. et al. Bariatric Roux-En-Y Gastric Bypass Surgery: Adipocyte Proteins Involved in Increased Bone Remodeling in Humans. OBES SURG 27, 1789–1796 (2017). https://doi.org/10.1007/s11695-017-2546-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-017-2546-4

Keywords

Navigation