Skip to main content

Learning Spatio-Temporal Behavioural Sequences

  • Chapter
  • First Online:
Nonlinear Circuits and Systems for Neuro-inspired Robot Control

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

Abstract

Living beings are able to adapt their behaviour repertoire to environmental constraints. Among the capabilities needed for such improvement, the ability to store and retrieve temporal sequences is of particular importance. This chapter focuses on the description of an architecture based on spiking neurons, able to learn and autonomously generate a sequence of generic objects or events. The neural architecture is inspired by the insect mushroom bodies already taken into account in the previous chapters as a crucial centre for multimodal sensory integration and behaviour modulation in insects. Sequence learning is only one among a variety of functionalities that coexist within the insect brain computational model. We will propose a series of implementations that can be adopted to obtain these objectives and report the simulation results obtained. We will embed these mechanisms also in roving robots thereby proposing forward-thinking experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeli, H., Park, H.: A neural dynamics model for structural optimization—theory. Comput. Struct. 57(3), 383–390 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmadkhanlou, F., Adeli, H.: Optimum cost design of reinforced concrete slabs using neural dynamics model. Eng. Appl. Artif. Intell. 18(1), 65–72 (2005)

    Article  Google Scholar 

  3. Arena, P., Caccamo, S., Patanè, L., Strauss, R.: A computational model for motor learning in insects. In: IJCNN, pp. 1349–1356. Dallas, TX (2013)

    Google Scholar 

  4. Arena, P., Calí, M., Patanè, L., Portera, A.: A fly-inspired mushroom bodies model for sensory-motor control through sequence and subsequence learning. Int. J. Neural Syst. 24(5), 1–16 (2016)

    Google Scholar 

  5. Arena, P., Calí, M., Patanè, L., Portera, A., Strauss, R.: Modeling the insect mushroom bodies: application to sequence learning. Neural Netw. 67, 37–53 (2015)

    Google Scholar 

  6. Arena, P., Fortuna, L., Frasca, M., Ganci, G., Patanè, L.: A bio-inspired auditory perception model for amplitude-frequency clustering. Proc. SPIE 5839, 359–368 (2005)

    Google Scholar 

  7. Arena, P., Fortuna, L., Frasca, M., Patanè, L.: Sensory feedback in CNN-based central pattern generators. Int. J. Neural Syst. 13(6), 349–362 (2003)

    Google Scholar 

  8. Arena, P., Fortuna, L., Frasca, M., Patanè, L.: A CNN-based chip for robot locomotion control. IEEE Trans. Circ. Syst. I 52(9), 1862–1871 (2005)

    Google Scholar 

  9. Arena, P., Fortuna, L., Frasca, M., Patanè, L.: Learning anticipation via spiking networks: application to navigation control. IEEE Trans. Neural Netw. 20(2), 202–216 (2009)

    Google Scholar 

  10. Arena, P., Patanè, L., Termini, P.: Learning expectation in insects: a recurrent spiking neural model for spatio-temporal representation. Neural Netw. 32, 35–45 (2012)

    Google Scholar 

  11. Arena, P., Stornanti, V., Termini, P., Zaepf, B., Strauss, R.: Modeling the insect mushroom bodies: Application to a delayed match-to-sample task. Neural Netw. 41, 202–211 (2013)

    Article  Google Scholar 

  12. Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., Dionne, H., Abbott, L., Axel, R., Tanimoto, H., Rubin, G.M.: The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3 (2014). https://doi.org/10.7554/eLife.04577

  13. Baddeley, B., Graham, P., Husbands, P., Philippides, A.: A model of ant route navigation driven by scene familiarity. PLoS Comput. Biol. 8(8), e1002,336 (2012). https://doi.org/10.1371/journal.pcbi.1002336

  14. Berthouze, L., Tijsseling, A.: A neural model for context dependent sequence learning. Neural Process. Lett. 23(1), 27–45 (2006)

    Article  Google Scholar 

  15. Brea, J., Senn, W., Pfister, J.: Matching recall and storage in sequence learning with spiking neural networks. J. Neurosci. 33(23), 9565–9575 (2013)

    Article  Google Scholar 

  16. Buonomano, D.V., Mauk, M.D.: Neural network model of the cerebellum: temporal discrimination and the timing of motor responses. Neural Comput. 6(1), 38–55 (1994). https://doi.org/10.1162/neco.1994.6.1.38

  17. Cassenaer, S., Laurent, G.: Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448(7154), 709–713 (2007)

    Article  Google Scholar 

  18. Collet, T., Fry, S., Wehner, R.: Sequence learning by honeybees. J. Comp. Physiol. A. 172(6), 693–706 (1993)

    Google Scholar 

  19. Davis, R., Han, K.: Neuroanatomy: mushrooming mushroom bodies. Curr. Biol. 6, 146–148 (1996)

    Article  Google Scholar 

  20. Drew, P.J., Abbott, L.F.: Extending the effects of spike-timing-dependent plasticity to behavioral timescales. Proc. Nat. Acad. Sci. USA 103(23), 8876–8881 (2006)

    Article  Google Scholar 

  21. Friedrich, J., Urbanczik, R., Senn, W.: Code-specific learning rules improve action selection by populations of spiking neurons. Int. J. Neural Syst. 24(05), 1450,002 (2014). http://www.worldscientific.com/doi/abs/10.1142/S0129065714500026

  22. Ghosh-Dastidar, S., Adeli, H.: Improved spiking neural networks for eeg classification and epilepsy and seizure detection. Int. J. Neural Syst. 14(03), 187–212 (2007)

    Google Scholar 

  23. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neural Syst. 19(4), 295–308 (2009)

    Article  Google Scholar 

  24. Giurfa, M.: Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr. Opin. Neurobiol. 13(6), 726–735 (2003)

    Article  Google Scholar 

  25. Izhikevich, E.M.: Solving the distal reward problem through linkage of stdp and dopamine signaling. Cereb. Cortex 17, 2443–2452 (2007)

    Article  Google Scholar 

  26. Jaeger, H.: Short term memory in echo state networks. GMD-Report German National Research Institute for Computer Science 152 (2002)

    Google Scholar 

  27. Liu, L., Wolf, R., Ernst, R., Heisenberg, M.: Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400, 753–756 (1999)

    Article  Google Scholar 

  28. Maass, W., Natschlaeger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  29. Martin, J.R., Ernst, R., Heisenberg, M.: Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Memory 5, 179–191 (1998)

    Google Scholar 

  30. Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: Span: Spike pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural Syst. 22(04), 1250,012 (2012). http://www.worldscientific.com/doi/abs/10.1142/S0129065712500128

  31. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  32. Mosqueiro, T.S., Huerta, R.: Computational models to understand decision making and pattern recognition in the insect brain. Curr. Opin. Insect Sci. 6, 80–85 (2014)

    Article  Google Scholar 

  33. Nowotny, T., Huerta, R., Abarbanel, H., Rabinovich, M.: Self-organization in the olfactory system: one shot odor recognition in insects. J. Comput. Neurosci. 93, 436–446 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Nowotny, T., Rabinovich, M., Huerta, R., Abarbanel, H.: Decoding temporal information through slow lateral excitation in the olfactory system of insects. J. Comput. Neurosci. 15, 271–281 (2003)

    Article  Google Scholar 

  35. Patanè, L., Hellbach, S., Krause, A.F., Arena, P., Duerr, V.: An insect-inspired bionic sensor for tactile localisation and material classification with state-dependent modulation. Frontiers Neurorobotics 6(8) (2012). http://www.frontiersin.org/neurorobotics/10.3389/fnbot.2012.00008/abstract

  36. Perez-Orive, J., Mazor, O., Turner, G., Cassenaer, S., Wilson, R., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365 (2002)

    Article  Google Scholar 

  37. Russo, P., Webb, B., Reeve, R., Arena, P., Patanè, L.: Cricket-inspired neural network for feedforward compensation and multisensory integration. In: IEEE Conference on Decision and Control (2005)

    Google Scholar 

  38. Sachse, S., Galizia, C.: Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J. Neurophysiol. 87, 1106–1117 (2002)

    Article  Google Scholar 

  39. Scherer, S., Stocker, R., Gerber, B.: Olfactory learning in individually assayed Drosophila larvae. Learn. Memory 10, 217–225 (2003)

    Article  Google Scholar 

  40. Schmuker, M., Pfeil, T., Nawrot, M.P.: A neuromorphic network for generic multivariate data classification. Proc. Nat. Acad. Sci. USA 111(6), 2081–2086 (2014). https://doi.org/10.1073/pnas.1303053111. http://www.pnas.org/content/111/6/2081.abstract

  41. Smith, D., Wessnitzer, J., Webb, B.: A model of associative learning in the mushroom body. Biol. Cybern. 99, 89–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stocker, R., Lienhard, C., Borst, A.: Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res. 9–34 (1990)

    Google Scholar 

  43. Strausfeld, N.J.: Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes. J. Comparative Neurology 450(1), 4–33 (2002). 10.1002/cne.10285. http://dx.doi.org/10.1002/cne.10285

  44. Tang, S., Guo, A.: Choice behavior of Drosophila facing contradictory visual cues. Science 294, 1543–1547 (2001)

    Article  Google Scholar 

  45. Tanimoto, H., Heisenberg, M., Gerber, B.: Experimental psychology: event timing turns punishment to reward. Nature 430, 983 (2004)

    Article  Google Scholar 

  46. Turner, G., Bazhenov, M., Laurent, G.: Olfactory representations by Drosophila mushroom body neurons. J. Neurophysiology, 734–746 (2008)

    Google Scholar 

  47. Webb, B., Wessnitzer, J., Bush, S., Schul, J., Buchli, J., Ijspeert, A.: Resonant neurons and bushcricket behaviour. J. Comparative Physiol. A 193(2), 285–288 (2007). https://doi.org/10.1007/s00359-006-0199-1

  48. Wehr, M., Laurent, G.: Odor encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996)

    Article  Google Scholar 

  49. Wessnitzer, J., Young, J., Armstrong, J., Webb, B.: A model of non-elemental olfactory learning in Drosophila. J. Neurophysiol. 32, 197–212 (2012)

    Google Scholar 

  50. Zhang, S., Bartsch, K., Srinivasan, M.: Maze learning by honeybees. Neurobiol. Learn. Mem. 66(3), 267–282 (1996)

    Article  Google Scholar 

  51. Zhang, S., Si, A., Pahl, M.: Visually guided decision making in foraging honeybees. Frontiers Neurosci. 6(88), 1–17 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Arena .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patanè, L., Strauss, R., Arena, P. (2018). Learning Spatio-Temporal Behavioural Sequences. In: Nonlinear Circuits and Systems for Neuro-inspired Robot Control. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-73347-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73347-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73346-3

  • Online ISBN: 978-3-319-73347-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics