Skip to main content
Log in

A model of associative learning in the mushroom body

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The mushroom body is a prominent invertebrate neuropil strongly associated with learning and memory. We built a high-level computational model of this structure using simplified but realistic models of neurons and synapses, and developed a learning rule based on activity dependent pre-synaptic facilitation. We show that our model, which is consistent with mushroom body Drosophila data and incorporates Aplysia learning, is able to both acquire and later recall CS–US associations. We demonstrate that a highly divergent input connectivity to the mushroom body and strong periodic inhibition both serve to improve overall learning performance. We also examine the problem of how synaptic conductance, driven by successive training events, obtains a value appropriate for the stimulus being learnt. We employ two feedback mechanisms: one stabilises strength at an initial level appropriate for an association; another prevents strength increase for established associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov I, Antonova I, Kandel E, Hawkins R (2003) Activity-dependent presynaptical facilitation and hebbian ltp are both required and interact during classical conditioning in Aplysia. Neuron 37: 135–147

    Article  PubMed  CAS  Google Scholar 

  • Bazhenov M, Stopfer M, Rabinovich M, Abarbanel H, Sejnowski T, Laurent G (2001a) Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron 30: 569–581

    Article  PubMed  CAS  Google Scholar 

  • Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H, Sejnowski T, Laurent G (2001b) Model of transient osciallatory synchronization in the locust antennal lobe. Neuron 30: 553–567

    Article  PubMed  CAS  Google Scholar 

  • Brembs B, Heisenberg M (2001) Conditioning with compound stimuli in Drosophila melanogaster in the flight simulator. J Exp Biol 204: 2849–2859

    PubMed  CAS  Google Scholar 

  • Carew T (2000) Behavioral neurobiology: the cellular organization of natural behaviour. Sinauer Associates, Massachusetts

    Google Scholar 

  • Connolly J, Roberts I, Armstrong J, Kaiser K, Forte M, Tully T, O’ane C (1996) Associative learning disrupted by impaired gs signaling in Drosophila mushroom bodies. Science 274: 2104–2107

    Article  PubMed  CAS  Google Scholar 

  • Damper R, French R, Scutt TW (2000) Arbib: an autonomous robot based on inspirations from biology. Robotics Auton Syst 31: 247–274

    Article  Google Scholar 

  • Damper R, French R, Scutt T (2001) The hi-noon neural simulator and its applications. Microelectron Reliab 41(12): 2051–2065

    Article  Google Scholar 

  • de Belle J, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263: 692–695

    Article  PubMed  Google Scholar 

  • Davis R (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28: 275–302

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411: 476–480

    Article  PubMed  CAS  Google Scholar 

  • Farris S (2005) Evolution of insect mushroom bodies: old clues, new insights. Arthropod Struct Dev 34: 211–234

    Article  Google Scholar 

  • Ferveur J, Strtkuhl K, Stocker R, Greenspan R (1995) Genetic feminization of brain structures and changed sexual orientation in male Drosophila. Science 267: 902–905

    Article  PubMed  CAS  Google Scholar 

  • Gingrich K, Byrne J (1985) Simulation of synaptic depression, posttetanic potentiation, and presynaptic facilitation of synaptic potentials from sensory neurons mediating gill-withdrawal reflex in Aplysia. J Neurophysiol 53(3): 652–669

    PubMed  CAS  Google Scholar 

  • Gingrich K, Byrne J (1987) Single-cell neuronal model for associative learning. J Neurophysiol 57(6): 1705–1715

    PubMed  CAS  Google Scholar 

  • Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13: 726–735

    Article  PubMed  CAS  Google Scholar 

  • Glanzman D (2005) Associative learning: Hebbian flies. Curr Biol 15: R416

    Article  PubMed  CAS  Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366: 59–63

    Article  Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5: 146–156

    PubMed  CAS  Google Scholar 

  • Hawkins R, Abrams T, Carew T, Kandel E (1983) A cellular mechanism of classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation. Science 219: 400–405

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nature Revi Neurosci 4: 266–275

    Article  CAS  Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2(1): 1–30

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M, Heusipp M, Wanke C (1995) Structural plasticity in the Drosophila brain. J Neurosci 15(3): 1951–1960

    PubMed  CAS  Google Scholar 

  • Huerta R, Nowotny T, Garcia-Sanchez M, Abarbanel H, Rabinovish M (2004) Learning classification in the olfactory system of insects. Neural Comput 16: 1601–1640

    Article  PubMed  Google Scholar 

  • Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124: 761–771

    PubMed  CAS  Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, Oxford

    Google Scholar 

  • Krichmar J, Edelman G (2002) Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cerebral Cortex 12: 818–830

    Article  PubMed  Google Scholar 

  • Lechner H, Byrne J (1998) New perspectives on classical conditioning: a synthesis of hebbian and non-hebbian mechanisms. Neuron 20: 355–358

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Wolf R, Ernst R, Heisenberg M (1999) Context generalization in Drosophila visual learning requires the mushroombodies. Nature 400: 753–756

    Article  PubMed  CAS  Google Scholar 

  • Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15: R700–R713

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Ernst R, Heisenberg M (1998) Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn Mem 5: 179–191

    PubMed  CAS  Google Scholar 

  • McGuire S, Le P, Davis R (2001) The role of Drosophila mushroom body signalling in olfactory memory. Science 293: 1330–1333

    Article  PubMed  CAS  Google Scholar 

  • McGuire S, Le P, Osborn A, Matsumoto K, Davis R (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302: 1765–1768

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Giurfa M (1999) Cognition by a mini brain. Nature 400: 718–719

    Article  PubMed  CAS  Google Scholar 

  • Nowotny T, Rabinovish M, Huerta R, Abarbanel H (2003) Decoding temporal information through slow lateral excitation in the olfactory system of insects. J Comput Neurosci 15: 271–281

    Article  PubMed  Google Scholar 

  • Nowotny T, Huerta R, Abarbanel H, Rabinovish M (2005) Self-organisation in the olfactory system: one shot odor recognition in insects. Biol Cybern 93: 436–446

    Article  PubMed  Google Scholar 

  • Olshausen B, Field D (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14: 481–487

    Article  PubMed  CAS  Google Scholar 

  • Pelz C, Jander J, Rosenboom H, Hammer M, Menzel R (1999) I A in kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by k+, and simulation. J Neurophysiol 81: 1749–1759

    PubMed  CAS  Google Scholar 

  • Rescorla R, Wagner A (1972) A theory of pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black A, Prokasy W (eds) Classical conditioning II, Appleton Century Crofts, pp 64–99

  • Roberts A, Glanzman D (2003) Learning in Aplysia: looking at synaptic plasticity from both sides. Trends Neurosci 26(12): 662–670

    Article  PubMed  CAS  Google Scholar 

  • Roman G, Davis R (2001) Molecular biology and anatomy of Drosophila olfactory associative learning. BioEssays 23: 571–581

    Article  PubMed  CAS  Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23(33):10,495–10,502

    Google Scholar 

  • Sjöström P, Nelson S (2002) Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12: 305–314

    Article  PubMed  Google Scholar 

  • Sporns O, Alexander W (2002) Neuromodulation and plasticity in an autonomous robot. Neural Netw 15: 761–774

    Article  PubMed  Google Scholar 

  • Strausfeld N, Hansen L, Li Y, Gomez R, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5: 11–37

    PubMed  CAS  Google Scholar 

  • Sutton R, Barto A (1981) Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev 88: 135–170

    Article  PubMed  CAS  Google Scholar 

  • Trappenberg T (2002) Fundamentals of Computational Neuroscience. Oxford University Press, Oxford

    Google Scholar 

  • Waddell S, Quinn W (2001) What can we teach Drosophila? what can they teach us?. Trends Genet 17: 719–726

    Article  PubMed  CAS  Google Scholar 

  • Walters E, Byrne J (1983) Associative conditioning of single sensory neurons suggests a cellular mechanism for learning. Science 219: 405–408

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wright N, Guo H, Xie Z, Svoboda K, Malinow R, Smith D, Zhong Y (2001) Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 29: 267–276

    Article  PubMed  CAS  Google Scholar 

  • Wehr M, Laurent G (1996) Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Wessnitzer J, Webb B, Smith D (2007) A model of non-elemental associative learning in the mushroom body neuropil of the insect brain. In: Beliczynski B, Dzielinski A, Iwanowski M, Ribeiro B(eds) Proceedings of the international conference on adaptive and natural computing algorithms, Lecture Notes in Computer Science, vol 4431. Springer, Heidelberg

    Google Scholar 

  • Wüstenberg D, Boytcheva M, Grünewald B, Byrne J, Menzel R, Baxter D (2004) Current- and volatage-clamp recordings and computer simulations of kenyon cells in the honeybee. J Neurophysiol 92: 2589–2603

    Article  PubMed  Google Scholar 

  • Xia S, Miyashita T, Fu TF, Lin WY, Wu CL, Pyzocha L, Lin IR, Saitoe M, Tully T, Chiang AS (2005) Nmda receptors mediate olfactory learning and memory in Drosophila. Curr Biol 15: 603–615

    Article  PubMed  CAS  Google Scholar 

  • Yusuyama K, Meinertzhagen I, Schurmann FW (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445: 211–226

    Article  Google Scholar 

  • Zars T (2000) Behavioral functions of the insect mushroom bodies. Curr Opin Neurobiol 10: 790–795

    Article  PubMed  CAS  Google Scholar 

  • Zars T, Wolf R, Davis R, Heisenberg M (2000) Tissue-specific expression of a type I adenylyl cyclase rescues the rutabaga mutant memory defect: in search of the engram. Learn Mem 7: 18–31

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D., Wessnitzer, J. & Webb, B. A model of associative learning in the mushroom body. Biol Cybern 99, 89–103 (2008). https://doi.org/10.1007/s00422-008-0241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0241-1

Keywords

Navigation