Skip to main content

Is There a Teichmüller Principle in Higher Dimensions?

  • Chapter
  • First Online:
Geometric Function Theory in Higher Dimension

Part of the book series: Springer INdAM Series ((SINDAMS,volume 26))

Abstract

The underlying theme of Teichmüller’s papers in function theory is a general principle which asserts that every extremal problem for univalent functions of one complex variable is connected with an associated quadratic differential. The purpose of this paper is to indicate a possible way of extending Teichmüller’s principle to several complex variables. This approach is based on the Loewner differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ich vermute, die Gesamtheit dieser Ungleichungen liefere eine vollständige Lösung des Bieberbachschen Koeffizientenproblems [41, p. 363].

References

  1. Aleksandrov, I.: Parametric Continuations in the Theory of Univalent Functions (Parametricheskie prodolzhenya teorii odnolistnykh funktsij), p. 343. Nauka, Moskva (1976)

    Google Scholar 

  2. Boltyanskiı̆, V.G., Gamkrelidze, R.V., Pontryagin, L.S.: On the theory of optimal processes. Dokl. Akad. Nauk SSSR (N.S.) 110, 7–10 (1956)

    Google Scholar 

  3. Bracci, F., Roth, O.: Support points and the Bieberbach conjecture in higher dimension. https://arxiv.org/abs/1603.01532

  4. Bracci, F., Contreras, M.D., Díaz-Madrigal, S., Vasil’ev, A.: Classical and stochastic Löwner-Kufarev equations. In: Harmonic and Complex Analysis and Its Applications, pp. 39–134. Birkhäuser/Springer, Cham (2014)

    Google Scholar 

  5. Bracci, F., Graham, I., Hamada, H., Kohr, G.: Variation of Loewner chains, extreme and support points in the class S 0 in higher dimensions. Constr. Approx. 43(2), 231–251 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caccioppoli, R.: Sui funzionali lineari nel campo delle funzioni analitiche. Atti Accad. Naz. Lincei, Rend., VI. Ser. 13, 263–266 (1931)

    Google Scholar 

  7. de Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duren, P.L.: Univalent functions. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259. Springer, New York (1983)

    Google Scholar 

  9. Friedland, S., Schiffer, M.: Global results in control theory with applications to univalent functions. Bull. Am. Math. Soc. 82(6), 913–915 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedland, S., Schiffer, M.: On coefficient regions of univalent functions. J. Analyse Math. 31, 125–168 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodman, G.S.: Univalent functions and optimal control. Ph.D. Thesis, Stanford University. ProQuest LLC, Ann Arbor, MI (1967)

    Google Scholar 

  12. Graham, I., Kohr, G.: Geometric function theory in one and higher dimensions. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 255. Marcel Dekker, New York (2003)

    Google Scholar 

  13. Graham, I., Hamada, H., Kohr, G.: Parametric representation of univalent mappings in several complex variables. Canad. J. Math. 54(2), 324–351 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Parametric representation and asymptotic starlikeness in ℂn. Proc. Am. Math. Soc. 136(11), 3963–3973 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extreme points, support points and the Loewner variation in several complex variables. Sci. China Math. 55(7), 1353–1366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extremal properties associated with univalent subordination chains in ℂn. Math. Ann. 359(1-2), 61–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grothendieck, A.: Sur certains espaces de fonctions holomorphes. I. J. Reine Angew. Math. 192, 35–64 (1953)

    MathSciNet  MATH  Google Scholar 

  18. Grothendieck, A.: Sur certains espaces de fonctions holomorphes. II. J. Reine Angew. Math. 192, 77–95 (1953)

    MathSciNet  MATH  Google Scholar 

  19. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Google Scholar 

  20. Jenkins, J.A.: Univalent functions and conformal mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie. Springer, Berlin (1958)

    Google Scholar 

  21. Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  22. Koch, J., Schleißinger, S.: Value ranges of univalent self-mappings of the unit disc. J. Math. Anal. Appl. 433(2), 1772–1789 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leung, Y.J.: Notes on Loewner differential equations. In: Topics in Complex Analysis (Fairfield, Conn., 1983). Contemporary Mathematics, vol. 38, pp. 1–11. American Mathematical Society, Providence, RI (1985)

    Google Scholar 

  24. Pommerenke, C.: Über die Subordination analytischer Funktionen. J. Reine Angew. Math. 218, 159–173 (1965)

    MathSciNet  MATH  Google Scholar 

  25. Pommerenke, C.: Univalent functions. Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV.

    Google Scholar 

  26. Popov, V.: L.S. Pontryagin’s maximum principle in the theory of univalent functions. Sov. Math. Dokl. 10, 1161–1164 (1969)

    Google Scholar 

  27. Prokhorov, D.: The method of optimal control in an extremal problem on a class of univalent functions. Sov. Math. Dokl. 29, 301–303 (1984)

    MATH  Google Scholar 

  28. Prokhorov, D.V.: Sets of values of systems of functionals in classes of univalent functions. Mat. Sb. 181(12), 1659–1677 (1990)

    MATH  Google Scholar 

  29. Prokhorov, D.V.: Reachable Set Methods in Extremal Problems for Univalent Functions. Saratov University Publishing House, Saratov (1993)

    MATH  Google Scholar 

  30. Prokhorov, D.V.: Bounded univalent functions. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 1, pp. 207–228. North-Holland, Amsterdam (2002)

    Google Scholar 

  31. Prokhorov, D., Samsonova, K.: Value range of solutions to the chordal Loewner equation. J. Math. Anal. Appl. 428(2), 910–919 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Roth, O.: Pontryagin’s maximum principle in geometric function theory. Complex Var. Theory Appl. 41(4), 391–426 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Roth, O.: Pontryagin’s maximum principle for the Loewner equation in higher dimensions. Canad. J. Math. 67(4), 942–960 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schaeffer, A.C., Spencer, D.C.: Coefficient regions for Schlicht functions. With a Chapter on the Region of the Derivative of a Schlicht Function by Arthur Grad, vol. 35. American Mathematical Society, New York, NY (1950)

    Google Scholar 

  35. Schaeffer, A.C., Schiffer, M., Spencer, D.C.: The coefficient regions of Schlicht functions. Duke Math. J. 16, 493–527 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schiffer, M.: A method of variation within the family of simple functions. Proc. Lond. Math. Soc. (2) 44, 432–449 (1938)

    Google Scholar 

  37. Schiffer, M.: Sur l’équation différentielle de M. Löwner. C. R. Acad. Sci. Paris 221, 369–371 (1945)

    MATH  Google Scholar 

  38. Schippers, E.: The power matrix, coadjoint action and quadratic differentials. J. Anal. Math. 98, 249–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schleissinger, S.: On support points of the class S 0(B n). Proc. Am. Math. Soc. 142(11), 3881–3887 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Strebel, K.: Quadratic differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Band 5, p. 184. Berlin etc. Springer. XII (1984)

    Google Scholar 

  41. Teichmüller, O.: Ungleichungen zwischen den Koeffizienten schlichter Funktionen.Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. 1938, 363–375 (1938)

    Google Scholar 

  42. Toeplitz, O.: Die linearen vollkommenen Räume der Funktionentheorie. Comment. Math. Helv. 23, 222–242 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zabczyk, J.: Mathematical Control Theory: An Introduction. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roth, O. (2017). Is There a Teichmüller Principle in Higher Dimensions?. In: Bracci, F. (eds) Geometric Function Theory in Higher Dimension. Springer INdAM Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-73126-1_7

Download citation

Publish with us

Policies and ethics