Skip to main content
Log in

Extremal properties associated with univalent subordination chains in \(\mathbb {C}^n\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For a linear operator \(A\in L(\mathbb {C}^n)\), let \(k_+(A)\) be the upper exponential index of \(A\) and let \(m(A)=\min \{\mathfrak {R}\langle A(z),z\rangle :\Vert z\Vert =1\}\). Under the assumption \(k_+(A)<2m(A)\), we consider the family \(S_A^0(B^n)\) of mappings which have \(A\)-parametric representation on the Euclidean unit ball \(B^n\) in \(\mathbb {C}^n\), i.e. \(f\in S_A^0(B^n)\) if and only if there exists an \(A\)-normalized univalent subordination chain \(f(z,t)\) such that \(f=f(\cdot ,0)\) and \(\{e^{-tA}f(\cdot ,t)\}_{t\ge 0}\) is a normal family on \(B^n\). We prove that if \(f=f(\cdot ,0)\) is an extreme point (respectively a support point) of \(S_A^0(B^n)\), then \(e^{-tA}f(\cdot ,t)\) is an extreme point of \(S_A^0(B^n)\) for \(t\ge 0\) (respectively a support point of \(S_A^0(B^n)\) for \(t\ge 0\)). These results generalize to higher dimensions related results due to Pell and Kirwan. We also deduce an \(n\)-dimensional version of an extremal principle due to Kirwan and Schober. In the second part of the paper, we consider extremal problems related to bounded mappings in \(S_A^0(B^n)\). To this end, we use ideas from control theory to investigate the (normalized) time-\(\log M\)-reachable family \(\tilde{\fancyscript{R}}_{\log M}(\mathrm{id}_{B^n},{\fancyscript{N}}_A)\) of (4.1) generated by the Carathéodory mappings, where \(M\ge 1\) and \(k_+(A)<2m(A)\). We prove that each mapping \(f\) in the above reachable family can be imbedded as the first element of an \(A\)-normalized univalent subordination chain \(f(z,t)\) such that \(\{e^{-tA}f(\cdot ,t)\}_{t\ge 0}\) is a normal family and \(f(\cdot ,\log M)=e^{A\log M}\mathrm{id}_{B^n}\). We also prove that the family \(\tilde{\fancyscript{R}}_{\log M}(\mathrm{id}_{B^n},{\fancyscript{N}}_A)\) is compact and we deduce a density result related to the same family, which involves the subset \(\mathrm{ex}\,{\fancyscript{N}}_A\) of \({\fancyscript{N}}_A\) consisting of extreme points. These results are generalizations to \(\mathbb {C}^n\) of related results due to Roth. Finally, we are concerned with extreme points and support points associated with compact families generated by extension operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M., Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: The evolution of Loewner’s differential equations. Eur. Math. Soc. Newsl. 78, 31–38 (2010)

    MATH  Google Scholar 

  2. Arosio, L.: Resonances in Loewner equations. Adv. Math. 227, 1413–1435 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arosio, L., Bracci, F.: Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds. Anal. Math. Phys. 1, 337–350 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arosio, L., Bracci, F., Hamada, H., Kohr, G.: An abstract approach to Loewner chains. J. Anal. Math. 119, 89–114 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arosio, L., Bracci, F., Wold, F.E.: Solving the Loewner PDE in complete hyperbolic starlike domains of \(\mathbb{C}^n\). Adv. Math. 242, 209–216 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Becker, J.: Über die Lösungsstruktur einer Differentialgleichung in der konformen Abbildung. J. Reine Angew. Math. 285, 66–74 (1976)

    MATH  MathSciNet  Google Scholar 

  7. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Evolution families and the Loewner equation II: complex hyperbolic manifolds. Math. Ann. 344, 947–962 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Semigroups versus evolution families in the Loewner theory. J. Anal. Math. 115, 273–292 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Evolution families and the Loewner equation I: the unit disk. J. Reine Angew. Math. 672, 1–37 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Brickman, L., Wilken, D.R.: Support points of the set of univalent functions. Proc. Am. Math. Soc. 42, 523–528 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cartan, H.: Sur la possibilité d’étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes, 129–155. Leçons sur les fonctions univalentes ou multivalentes, Gauthier-Villars, Paris, Note added to P. Montel (1933)

  12. Daleckii, Yu.L., Krein, M.G.: Stability of solutions of differential equations in Banach space. Transl. Math. Monogr., vol. 43. American Mathematical Society, Providence (1974)

  13. Duren, P.: Univalent Functions. Springer, New York (1983)

    MATH  Google Scholar 

  14. Duren, P., Graham, I., Hamada, H., Kohr, G.: Solutions for the generalized Loewner differential equation in several complex variables. Math. Ann. 347, 411–435 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Elin, M.: Extension operators via semigroups. J. Math. Anal. Appl. 377, 239–250 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Elin, M., Reich, S., Shoikhet, D.: Complex dynamical systems and the geometry of domains in Banach spaces. Diss. Math. 427, 1–62 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Friedland, S., Schiffer, M.: On coefficient regions of univalent functions. J. Anal. Math. 31, 125–168 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goodman, G.S.: Univalent Functions and Optimal Control, Ph.D. Thesis, Stanford Univ. (1968)

  19. Gong, S.: Convex and Starlike Mappings in Several Complex Variables. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  20. Graham, I., Hamada, H., Kohr, G.: Parametric representation of univalent mappings in several complex variables. Can. J. Math. 54, 324–351 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Graham, I., Hamada, H., Kohr, G.: Extension operators and subordination chains. J. Math. Anal. Appl. 386, 278–289 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Asymptotically spirallike mappings in several complex variables. J. Anal. Math. 105, 267–302 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Parametric representation and asymptotic starlikeness in \(\mathbb{C}^n\). Proc. Am. Math. Soc. 136, 3963–3973 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Spirallike mappings and univalent subordination chains in \(\mathbb{C}^n\). Ann. Scuola Norm. Sup. Pisa-Cl. Sci. 7, 717–740 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extreme points, support points and the Loewner variation in several complex variables. Sci. China Math. 55, 1353–1366 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Univalent subordination chains in reflexive complex Banach spaces. Contemp. Math. (AMS) 591, 83–111 (2013)

    Article  MathSciNet  Google Scholar 

  27. Graham, I., Hamada, H., Kohr, G., Kohr, M.: Asymptotically spirallike mappings in reflexive complex Banach spaces. Complex Anal. Oper. Theory 7, 1909–1927 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Marcel Dekker Inc, New York (2003)

    MATH  Google Scholar 

  29. Graham, I., Kohr, G., Kohr, M.: Loewner chains and parametric representation in several complex variables. J. Math. Anal. Appl. 281, 425–438 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Graham, I., Kohr, G., Pfaltzgraff, J.A.: Parametric representation and linear functionals associated with extension operators for biholomorphic mappings. Rev. Roumaine Math. Pures Appl. 52, 47–68 (2007)

    MATH  MathSciNet  Google Scholar 

  31. Gurganus, K.: \(\Phi \)-like holomorphic functions in \(\mathbb{C}^n\) and Banach spaces. Trans. Am. Math. Soc. 205, 389–406 (1975)

    MATH  MathSciNet  Google Scholar 

  32. Hallenbeck, D.J., MacGregor, T.H.: Linear Problems and Convexity Techniques in Geometric Function Theory. Pitman, Boston (1984)

    MATH  Google Scholar 

  33. Hamada, H.: Polynomially bounded solutions to the Loewner differential equation in several complex variables. J. Math. Anal. Appl. 381, 179–186 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hamada, H., Kohr, G., Muir Jr, J.R.: Extensions of \(L^d\)-Loewner chains to higher dimensions. J. Anal. Appl. 120, 357–392 (2013)

    MATH  MathSciNet  Google Scholar 

  35. Harris, L.: The numerical range of holomorphic functions in Banach spaces. Am. J. Math. 93, 1005–1019 (1971)

    Article  MATH  Google Scholar 

  36. Jurdjevic, V.: Geometric Control Theory. Cambridge Univ Press, Cambridge (1997)

    MATH  Google Scholar 

  37. Kirwan, W.E.: Extremal properties of slit conformal mappings. In: Brannan, D., Clunie, J. (eds.) Aspects of Contemporary Complex Analysis, pp. 439–449. Academic Press, London (1980)

    Google Scholar 

  38. Kirwan, W.E., Schober, G.: New inequalities from old ones. Math. Z. 180, 19–40 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lee, E., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)

    MATH  Google Scholar 

  40. Loewner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann. 89, 103–121 (1923)

    Article  MATH  Google Scholar 

  41. MacGregor, T.H., Wilken, D.R.: Extreme points and support points. In: Kühnau, R. (ed.) Handbook of Complex Analysis: Geometric Function Theory, vol. I, pp. 371–392. Elsevier, Amsterdam (2002)

  42. Muir, J.R.: A class of Loewner chain preserving extension operators. J. Math. Anal. Appl. 337, 862–879 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pell, R.: Support point functions and the Loewner variation. Pacific J. Math. 86, 561–564 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  44. Pfaltzgraff, J.A.: Subordination chains and univalence of holomorphic mappings in \(\mathbb{C}^n\). Math. Ann. 210, 55–68 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pfaltzgraff, J.A.: Subordination chains and quasiconformal extension of holomorphic maps in \(\mathbb{C}^n\). Ann. Acad. Scie. Fenn. Ser. A I Math. 1, 13–25 (1975)

  46. Pfluger, A.: Lineare extremal probleme bei schlichten Funktionen. Ann. Acad. Sci. Fenn. Ser. A I., 489 (1971)

  47. Pommerenke, C.: Über die subordination analytischer funktionen. J. Reine Angew. Math. 218, 159–173 (1965)

    MATH  MathSciNet  Google Scholar 

  48. Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  49. Poreda, T.: On Generalized Differential Equations in Banach Spaces. Diss. Math. 310, 1–50 (1991)

    MathSciNet  Google Scholar 

  50. Poreda, T.: On the univalent holomorphic maps of the unit polydisc in \(\mathbb{C}^n\) which have the parametric representation, I-the geometrical properties. Ann. Univ. Mariae Curie Skl. Sect. A. 41, 105–113 (1987)

  51. Poreda, T.: On the univalent holomorphic maps of the unit polydisc in \(\mathbb{C}^n\) which have the parametric representation, II-the necessary conditions and the sufficient conditions. Ann. Univ. Mariae Curie Skl. Sect. A. 41, 115–121 (1987)

  52. Prokhorov, D.V.: Bounded univalent functions. In: Kühnau, R. (ed.) Handbook of Complex Analysis: Geometric Function Theory, vol. I, pp. 207–228, Elsevier, Amsterdam (2002)

  53. Range, M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, New York (1986)

    Book  MATH  Google Scholar 

  54. Reich, S., Shoikhet, D.: Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  55. Roper, K., Suffridge, T.J.: Convex mappings on the unit ball of \(\mathbb{C}^n\). J. Anal. Math. 65, 333–347 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  56. Roth, O.: Control theory in \({\cal H}(\mathbb{D})\). Diss. Bayerischen Univ, Wuerzburg (1998)

    Google Scholar 

  57. Roth, O.: A remark on the Loewner differential equation, Comput. Methods and Function Theory 1997 (Nicosia), Ser. Approx. Decompos, vol. 11, pp. 461–469. World Sci. Publ. River Edge (1999)

  58. Schleissinger, S.: On support points of the class \(S^0(B^n)\). Proc. Am. Math. Soc. (2013, to appear)

  59. Suffridge, T.J.: Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions. In: Lecture Notes Math., vol. 599, pp. 146–159. Springer, Berlin (1977)

  60. Voda, M.: Solution of a Loewner chain equation in several complex variables. J. Math. Anal. Appl. 375, 58–74 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  61. Voda, M.: Loewner theory in several complex variables and related problems, Ph.D thesis, Univ. Toronto (2011)

Download references

Acknowledgments

The authors would like to thank the referee for a very careful reading of the paper and for valuable suggestions that improved the manuscript. Also, the authors are grateful to S. Schleissinger for providing the proof of Proposition 3.4 in the case \(A=I_n\). Some of the research for this paper was done in August, 2012, and August, 2013, while Gabriela and Mirela Kohr visited the Department of Mathematics of the University of Toronto. They are grateful to the members of this department for the hospitality during these visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Graham.

Additional information

I. Graham was partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant A9221. H. Hamada was partially supported by JSPS KAKENHI Grant Number 25400151. G. Kohr was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0899. M. Kohr was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, I., Hamada, H., Kohr, G. et al. Extremal properties associated with univalent subordination chains in \(\mathbb {C}^n\) . Math. Ann. 359, 61–99 (2014). https://doi.org/10.1007/s00208-013-0998-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0998-y

Mathematics Subject Classification (2000)

Navigation