Skip to main content

Yeast Viability and Vitality

  • Chapter
  • First Online:
Brewing and Distilling Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

Abstract

Despite the frequent use of the terms yeast viability and yeast vitality in both the brewing and distilling literature, the application of these terms is often confused. There are a number of analyses to show that yeast is alive; the relationships between a cell’s environment and the methods employed for its cultivation are complex! These methods include the ability of cells to grow on solid or in liquid media and strain-based systems; some are based on changes in the charges and functionality of the cell membrane, and others are dyes that penetrate into live and/or dead cells. The methods for assessing cell viability only provide information on live and dead cells in a whole population. Methods for yeast vitality determination are based on various physiological and metabolic aspects of cells. These methods include:

  • Intracellular ATP content based on the luciferin reaction

  • Determination of mitochondrial membrane potential

  • Acidification power test following the addition of glucose

  • Magnesium release test based on the fact that low molecular weight ions such as magnesium and others are released by yeast following addition of glucose to the medium

  • Determination of the activity of enzymes such as esterase, oxidoreductases or several different redox enzymes

Recent studies have aimed to develop a clear classification to develop methods for the analysis of both the viability and vitality of yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aeschbacher M, Reinhardt CA, Zbinden G (1986) A rapid cell membrane permeability test using fluorescent dyes and flow cytometry. Cell Biol Toxicol 2:247–255

    Article  CAS  PubMed  Google Scholar 

  • Ansehn S, Nilsson L (1984) Direct membrane-damaging effect of ketoconazole and tioconazole on Candida albicans demonstrated by bioluminescent assay of ATP. Antimicrob Agents Chemother 26:22–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austriaco NR (1996) Review: To bud until death: the genetics of ageing in the yeast Saccharomyces. Yeast 12:623 630

    Article  Google Scholar 

  • Bamforth C, Lentini A (2009) The flavor instability of beer. In: Bamforth CW (ed) Beer: a quality perspective. Elsevier, Boston, MA, pp 85–109

    Chapter  Google Scholar 

  • Bapat P, Nandy SK, Wangikar P, Venkatesh KV (2006) Quantification of metabolically active biomass using Methylene Blue dye Reduction Test (MBRT): measurement of CFU in about 200 s. J Microbiol Methods 65:107–116

    Article  CAS  PubMed  Google Scholar 

  • Barker MG, Smart KA (1996) Morphological changes associated with the cellular ageing of a brewing yeast strain. J Am Soc Brew Chem 54:121–126

    CAS  Google Scholar 

  • Bochner BS, McKelvey AA, Schleimer RP, Hildreth JEK, DW MG Jr (1989) Flow cytometric methods for the analysis of human basophil surface antigens and viability. J Immunol Methods 125:265–271

    Article  CAS  PubMed  Google Scholar 

  • Bolat I (2008) The importance of trehalose in brewing yeast survival. Innov Roman Food Biotech 2:1–10

    CAS  Google Scholar 

  • Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:685–704

    Article  Google Scholar 

  • Boulton C, Quain D (2001) Brewing yeast and fermentation. Blackwell Science, Oxford

    Google Scholar 

  • Breeuwer P, Jean-Louis D, Bunschoten N (1995) Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol 61:1614–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvell JP, Turner K (2003) New applications and methods utilizing radio-frequency impedance measurements for improving yeast management. MBAA Tech Quart 40:30–38

    Google Scholar 

  • Carvell JP, Austin G, Matthee A, Van de Spiegle K, Cunningham S, Harding C (2000) Developments in using off-line radio frequency impedance methods for measuring viable cell concentration in the brewery. J Am Soc Brew Chem 58:57–62

    CAS  Google Scholar 

  • Casey G, Chen E, Ingledew W (1985) High gravity brewing: production of high levels of ethanol without excessive concentrations of esters and fusel alcohols. J Am Soc Brew Chem 43:179–182

    CAS  Google Scholar 

  • Castro FAV, Mariani D, Panek AD, Eleutherio ECA, Pereira MD (2008) Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PLoS One 3(12):e3999

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan L, Driscoll D, Kuksin D, Saldi S (2016) Measuring lager and ale yeast viability and vitality using fluorescence-based image cytometry. MBAA Tech Quart 53:49–54

    Google Scholar 

  • Chrzanowski TH, Crotty RD, Hubbard JG, Welch RP (1984) Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microb Ecol 10:179–185

    Article  CAS  PubMed  Google Scholar 

  • Cooper DJ, Stewart GG, Bryce JH (1998) Some reasons why high gravity brewing has a negative effect on head retention. J Inst Brew 104:221–228

    Article  Google Scholar 

  • Cooper DJ, Stewart GG, Bryce JH (2000) Yeast proteolytic activity during high and low gravity wort fermentations and its effect on head retention. J Inst Brew 106:197–202

    Article  Google Scholar 

  • Cunningham (2000) The reaction of brewer’s yeast from different fermentation conditions to acid washing. PhD thesis, Heriot Watt University, Edinburgh

    Google Scholar 

  • Cunningham S, Stewart GG (2000) Acid washing and serial repitching a brewing ale strain of Saccharomyces cerevisiae in high gravity wort and the role of wort oxygenation conditions. J Inst Brew 106:389–402

    Article  Google Scholar 

  • Czekanska EM (2011) Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol Biol 740:27–32

    Article  CAS  PubMed  Google Scholar 

  • D’Amore T, Russell I, Stewart GG (1989) Sugar utilization by yeast during fermentation. J Ind Microbiol 4:315–324

    Article  Google Scholar 

  • D’Amore T, Crumplen R, Stewart GG (1991) The involvement of trehalose in yeast stress tolerance. J Ind Microbiol 7:191–196

    Article  Google Scholar 

  • Davey HM (2011) Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77:5571–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinsdale MG, Loyd D, Jarvis B (1995) Yeast vitality during cider fermentation: two approaches to the measurement of membrane potential. J Inst Brew 101:453–458

    Article  Google Scholar 

  • Ernandes JR, D’Amore T, Russell I, Stewart GG (1992) Regulation of glucose and maltose transport in strains of Saccharomyces. J Ind Microbiol 9:127–130

    Article  CAS  Google Scholar 

  • Ernandes JR, Williams JW, Russell I, Stewart GG (1993) Respiratory deficiency in brewing yeast strains – effects on fermentation, flocculation and beer flavour components. J Am Soc Brew Chem 51:16–20

    CAS  Google Scholar 

  • Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basañez G, Hardwick JM (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd GM, Chalmers K, Reed RH (1997) The role of trehalose in dehydration resistance in Saccharomyces cerevisiae. FEMS Microbiol Lett 48:249–254

    Article  Google Scholar 

  • Galton F (1869) Heredity genius: an enquiry into its laws and consequences. Macmillan, London

    Google Scholar 

  • Gänzle MG (2014) Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol 37:2–10

    Article  PubMed  Google Scholar 

  • Gilliland RB (1959) Determination of yeast viability. J Inst Brew 65:424–429

    Article  Google Scholar 

  • Grant HL (1999) Hops. In: McCabe JT (ed) The practical brewer. Master Brewers Association of the Americas, Wauwatosa, WI, pp 201–219

    Google Scholar 

  • Hayflick L (1965) The limited in vitro lifespan of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  • Heggart H, Margaritis A, Pilkington H, Stewart RJ, Dowhanick TM, Russell I (1999) Factors affecting yeast viability and vitality characteristics: a review. MBAA Tech Quart 36:383–406

    CAS  Google Scholar 

  • Heggart H, Margaritis A, Pilkington H, Stewart RJ, Sobczak H, Russell I (2000) Measurement of brewing yeast viability and vitality: a review of methods. MBAA Tech Quart 37:409–430

    CAS  Google Scholar 

  • Imai T, Ohno T (1994) Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J Biotechnol 38:165–172

    Article  Google Scholar 

  • Imai T, Ohno T (1995) The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 61:3604–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imai T, Nakajima I, Ohno T (1994) Development of a new method of evaluation of yeast vitality by measuring intracellular pH. J Am Soc Brew Chem 52:5–8

    CAS  Google Scholar 

  • Jamieson DJ (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14:1511–1527

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CL, Kennedy AI, Hodgson JA, Thurston P, Smart KA (2003) Impact of serial repitching on lager brewing yeast quality. J Am Soc Brew Chem 61:1–9

    CAS  Google Scholar 

  • Jett BD, Hatter KL, Huycke MM, Gilmore MS (1997) Simplified agar plate method for quantifying viable bacteria. BioTechniques 23:648–650

    CAS  PubMed  Google Scholar 

  • Jiménez J, Bru S, Ribeiro M, Clotet J (2015) Live fast, die soon: cell cycle progression and lifespan in yeast cells. Microb Cell 2:62–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones M, Pierce JS (1964) Absorption of amino acids from wort by yeasts. J Inst Brew 70:307–315

    Article  CAS  Google Scholar 

  • Kaneda H, Tokashio M, Tomaki T, Osawa T (1997) Influence of pH on flavour staling during beer storage. J Inst Brew 103:21–23

    Article  CAS  Google Scholar 

  • Kara BV, Simpson WJ, Hammond JRM (1988) Prediction of the fermentation performance of brewing yeast with the acidification power test. J Inst Brew 94:153–158

    Article  Google Scholar 

  • Kennedy AI, Taidi B, Dola JL, Hodsgon JA (1997) Optimisation of a fully defined medium for yeast fermentation studies. Food Technol Biotechnol 35:261–265

    CAS  Google Scholar 

  • Kirsop BH (1974) Oxygen in brewery fermentation. J Inst Brew 80:252–259

    Article  CAS  Google Scholar 

  • Knudsen FB (1999) Fermentation, principles and practices. In: McCabe JT (ed) The practical brewer. Master Brewers Association of the Americas, Wauwatosa, WI, pp 235–261

    Google Scholar 

  • Kotyk A (1963) Folia. Microbiol (Prague) 8:27–31

    Article  CAS  Google Scholar 

  • Kwolek-Mirek M, Zadrag-Tecza R (2014) Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res 14:1068–1079

    CAS  PubMed  Google Scholar 

  • Kwolek-Mirek M, Bednarska S, Bartosz G, Bilinski T (2009) Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae. Cell Biol Toxicol 25:363–378

    Article  CAS  PubMed  Google Scholar 

  • Kwolek-Mirek M, Bednarska S, ZadrÄ…g-TÄ™cza R, Bartosz G (2011) The hydrolytic activity of esterases in the yeast Saccharomyces cerevisiae is strain dependent. Cell Biol Int 35:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Layfield JB, Sheppard JD (2015) What brewers should know about viability, vitality, and overall brewing fitness: a mini-review. MBAA Tech Quart 52:132–140

    Google Scholar 

  • Lekkas C, Stewart GG, Hill AE, Taidi B, Hodgson J (2007) Elucidation of the role of nitrogenous wort components in yeast fermentation. J Inst Brew 113:3–8

    Article  CAS  Google Scholar 

  • Lentini A (1993) A review of the various methods available for monitoring the physiological status of yeast: yeast viability and vitality. Fermentation 6:321–327

    Google Scholar 

  • Levitz SM, Diamond RD (1985) A rapid colorimetric assay of fungal viability with the tetrazolium salt MTT. J Infect Dis 152:938–945

    Article  CAS  PubMed  Google Scholar 

  • Lloyd D, Hayes AJ (1995) Vigour, vitality and viability of microorganisms. FEMS Microbiol Lett 133:1–7

    Article  CAS  Google Scholar 

  • Lodolo EJ, Kock JLF, Axcell BC, Brooks M (2008) The yeast Saccharomyces cerevisiae – the main character in beer brewing. FEMS Yeast Res 8:1018–1036. Special Issue: Thematic issue: Alcoholic fermentation: beverages to biofuel

    Google Scholar 

  • Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16:18–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludovico P, Sansonetty F, Corte-Real M (2001) Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology 147:3335–3343

    Article  CAS  PubMed  Google Scholar 

  • Maneval WE (1929) Some staining methods for bacteria and yeasts. Stain Technol 4:21–25

    Article  CAS  Google Scholar 

  • Marchi E, Cavalieri D (2008) Yeast as a model to investigate the mitochondrial role in adaptation to dietary fat and calorie surplus. Genes Nutr 3:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGahon AJ, Martin SJ, Bissonnette RP, Mahboubi A, Shi Y, Mogil RJ, Nishioka WK, Green DR (1995) The end of the (cell) line: methods for the study of apoptosis in vitro. In: Schwartz LM, Osborne BA (eds) Methods in cell biology: vol 46. Cell death. Academic Press, New York, pp 153–187

    Google Scholar 

  • Millard PJ, Roth BL, Thi HPT, Yue ST, Haugland RP (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol 63:2897–2905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minois N, Frajnt M, Wilson C, Vaupel JW (2005) Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:402–406

    Article  CAS  PubMed  Google Scholar 

  • Mochaba FM, O’Connor-Cox ESC, Axcell BC (1997) A novel and practical yeast vitality method based on magnesium ion release. J Inst Brew 103:99–102

    Article  CAS  Google Scholar 

  • Mochaba FM, O’Connor-Cox ESC, Axcell BC (1998) Practical procedures to measure yeast viability and vitality prior to pitching. J Am Soc Brew Chem 56:1–6

    CAS  Google Scholar 

  • Murray CR, Barich T, Taylor D (1984) The effect of yeast storage conditions on subsequent fermentations. MBAA Tech Quart 21:189–194

    CAS  Google Scholar 

  • Nielsen O (2005) Control of the yeast propagation process – how to optimize oxygen supply and minimize stress. MBAA Tech Quart 42:128–132

    Google Scholar 

  • Nielsen O (2010) Status of the yeast propagation process and some aspects of propagation for re-fermentation. Cerevisia 35:71–74

    Article  Google Scholar 

  • Nikolova M, Savova I, Marinov M (2002) An optimised method for investigation of the yeast viability by means of fluorescent microscopy. J Cult Collect 3:66–71

    Google Scholar 

  • Novak S, D’Amore T, Stewart GG (1990) 2-Deoxy-d-glucose resistant yeast with altered sugar transport activity. FEBS Lett 269:202–204

    Article  CAS  PubMed  Google Scholar 

  • O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  • Odumeru JA, D’Amore T, Russell I, Stewart GG (1992) Change in protein composition of Saccharomyces brewing in response to heat shock and ethanol stress. J Ind Microbiol 9:229–234

    Article  CAS  Google Scholar 

  • Painting K, Kirsop B (1990) A quick method for estimating the percentage of viable cells in a yeast population, using methylene blue staining. World J Microbiol Biotechnol 6:346–347

    Article  CAS  PubMed  Google Scholar 

  • Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet 22:183–186

    Article  CAS  PubMed  Google Scholar 

  • Powell CD, Van Zandycke SM, Quain DE, Smart KA (2000) Replicative ageing and senescence in Saccharomyces cerevisiae and the impact on brewing fermentations. Microbiology 146:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Powell CD, Quain DE, Smart KA (2003) The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res 3:149–157

    Article  CAS  PubMed  Google Scholar 

  • Pratt-Marshall PL (2002) High gravity brewing—an inducer of yeast stress. Its effect on cellular morphology and physiology. Ph.D. thesis, Heriot-Watt University, Edinburgh, Scotland

    Google Scholar 

  • Pratt-Marshall PL, Bryce JH, Stewart GG (2003) The effects of osmotic pressure and ethanol on yeast viability and morphology. J Inst Brew 109:218–228

    Article  Google Scholar 

  • Quain DE, Tubb RS (1982) The importance of glycogen in brewing yeasts. MBAA Tech Quart 19:29–33

    CAS  Google Scholar 

  • Russell I, Stewart GG (eds) (2014) Whisky: Technology, Production and Marketing, 2nd edn. Academic Press (Elsevier), Boston, MA

    Google Scholar 

  • Sheppard JD, Dawson PSS (1999) Cell synchrony and periodic behavior in yeast populations. Can J Chem Eng 77:893–902

    Article  CAS  Google Scholar 

  • Simpson WJ, Hammond JRM (1989) Cold ATP extractants compatible with constant light signal firefly luciferase reagents. In: Stanley PE, McCarthy BJ, Smither R (eds) ATP luminescence: rapid methods in microbiology. Society for Applied Bacteriology technical series, vol 26. Blackwell Scientific Publications, Oxford, pp 45–52

    Google Scholar 

  • Slavik J (1982) Intracellular pH of yeast cells measured with fluorescent probes. FEBS Lett 140:22–26

    Article  CAS  PubMed  Google Scholar 

  • Smart A, Whisker S (1996) Effect of serial repitching on the fermentation properties and condition of brewing yeast. J Am Soc Brew Chem 54:41–44

    CAS  Google Scholar 

  • Smart KA, Chambers KM, Lambert I, Jenkins C (1999) Use of methylene violet staining procedures to determine yeast viability and vitality. J Am Soc Brew Chem 57:18–23

    CAS  Google Scholar 

  • Stewart GG (2006) Studies on the uptake and metabolism of wort sugars during brewing fermentations. MBAA Tech Quart 43:265–269

    CAS  Google Scholar 

  • Stewart GG (2010) High gravity brewing and distilling – past experiences and future prospects. J Am Soc Brew Chem 68:1–9

    CAS  Google Scholar 

  • Stewart GG (2014a) Brewing intensification. American Society of Brewing Chemists, St Paul, MN

    Google Scholar 

  • Stewart GG (2014b) The concept of nature-nurture applied to brewer’s yeast and wort fermentation. MBAA Tech Quart 51:69–80

    Google Scholar 

  • Stewart GG (2015) Seduced by yeast. J Am Soc Brew Chem 73:1–21

    CAS  Google Scholar 

  • Stewart GG, Murray J (2010) A selective history of high gravity and high alcohol beers. MBAA Tech Quart 47: TQ-47-2-0416-01

    Google Scholar 

  • Stewart GG, Russell I, Goring TE (1975) Nature-nurture anomalies – further studies in yeast flocculation. Am Soc Brew Chem Proc 33:137–147

    Google Scholar 

  • Valli M, Sauer M, Branduardi V, Borth N, Porro D, Mattanovich D (2005) Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry. Appl Environ Microbiol 71:1515–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker GM, Chandrasena G, Birch RM, Maynard A (1995) Proceedings of the 4th Aviemore malting, brewing and distilling conference, 185–192

    Google Scholar 

  • Zheng X, D’Amore T, Russell I, Stewart GG (1994a) Transport kinetics of maltose and maltotriose in strains of Saccharomyces. J Ind Microbiol Biotechnol 13:159–166

    Google Scholar 

  • Zheng X, D’Amore T, Russell I, Stewart GG (1994b) Factors influencing maltotriose utilization during brewery wort fermentations. J Am Soc Brew Chem 52:41–47

    CAS  Google Scholar 

  • Zitomer RS, Lowry CV (1992) Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 56:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, G.G. (2017). Yeast Viability and Vitality. In: Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-69126-8_8

Download citation

Publish with us

Policies and ethics