Skip to main content

Stress Effects on Yeast During Brewing and Distilling Fermentations: High-Gravity Effects

  • Chapter
  • First Online:
Brewing and Distilling Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

Abstract

All organisms have evolved to cope with changes in environmental conditions, ensuring the optimal combination of metabolism, cell proliferation and survival. Brewing and distilling fermentations exert a number of stresses on yeast cultures. During the past 50 years or so, the question of process efficiency and intensification has become a major focus and the stresses imposed, and over time this focus has become intensified. The primary brewing technique (not the only one) that is susceptible to intensification is high-gravity (HG) processing, particularly high-gravity wort fermentation processes. The question has often been asked: “Does the use of high-gravity wort inflict unusual and cruel punishment on yeast?” As well as HG conditions, there are a number of other parameters that persist during brewing and distilling fermentations, which exert stresses upon yeast. These parameters include ethanol, osmotic pressure, temperature, cell surface shear, continuous fermentation compared to batch fermentation, wort ionic balance and some minor wort components. Nevertheless, the conditions that prevail in HG worts are the primary factors that exert stresses on yeast. These factors are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguilera A, Benitez T (1985) Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Arch Microbiol 142:389–392

    Article  CAS  PubMed  Google Scholar 

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  CAS  PubMed  Google Scholar 

  • Alfenore S, Molina-Jouve C, Guillouet SE, Uribelarrea JL, Goma G, Benbadis L (2002) Improving ethanol production and viability of S. cerevisiae by vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60:67–72

    Article  CAS  PubMed  Google Scholar 

  • Anderson RG, Kirsop BH (1975) Quantitative aspects of the control of oxygenation on acetate ester concentration in beer obtained from high gravity. J Inst Brew 81:286–301

    Google Scholar 

  • Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225:259–263

    Article  CAS  PubMed  Google Scholar 

  • Bafrncova P, Smogrovicova D, Salvikova I, Patkova J, Domeny Z (1999) Improvement of very high gravity ethanol fermentation by media supplementation using S. cerevisiae. Biotechnol Lett 21:337–341

    Article  CAS  Google Scholar 

  • Bah S, McKee WE (1965) Beer-spoilage bacteria and their control with a phosphoric acid – ammonium persulfate wash. Canadian J Microbiol 11:309–318

    Article  CAS  Google Scholar 

  • Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M (2004) Continuous ethanol production and evaluation loss under very high gravity medium conditions. J Biotechnol 110:287–293

    Article  CAS  PubMed  Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S Afr J Enol 21:27–51

    CAS  Google Scholar 

  • Beaven MJ, Charpentier C, Rose AH (1982) Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. J Gen Microbiol 128:1447–1455

    CAS  Google Scholar 

  • Benito B, Portillo F, Lagunas R (1992) In vivo activation of the yeast plasma membrane ATPase during nitrogen starvation. FEBS Lett 300:271–274

    Article  CAS  PubMed  Google Scholar 

  • Bisson LF, Coons DM, Frankel AL, Lewis DA (1993) Yeast sugar transporters. CRC Crit Rev Biochem Mol Biol 284:269–308

    Google Scholar 

  • Blasco L, Vinas M, Villa T (2011) Proteins influencing foam formation in wine and beer: the role of yeast. Int Microbiol 14:61–71

    CAS  PubMed  Google Scholar 

  • Blasco L, Veiga-Crespo P, Sánchez-Pérez A, Villa TG (2012) Cloning and characterization of the beer foaming gene CFG1 from Saccharomyces pastorianus. J Agric Food Chem 60:10796–10807

    Article  CAS  PubMed  Google Scholar 

  • Blieck L, Toye G, Dumortier F, Vertrepen KJ, Delvaux FD, JM T, Vandijck P (2007) Isolation and characterization of brewer’s yeast variants with improved fermentation performance under high-gravity conditions. Appl Environ Microbiol 73:815–824

    Article  CAS  PubMed  Google Scholar 

  • Bolat I (2008) The importance of trehalose in brewing yeast survival. Innov Roman Food Biotechnol 2:1–10

    CAS  Google Scholar 

  • Bose S, Dutko JA, Zitomer RS (2005) Genetic factors that regulate the attenuation of the general stress response of yeast. Genetics 169:1215–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG, Botstein D (2008) Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19:352–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brey SE, Bryce JH, Stewart GG (2002) The loss of hydrophobic polypeptides during fermentation and conditioning of high gravity and low gravity brewed beer. J Inst Brew 108:424–433

    Article  CAS  Google Scholar 

  • Brey SE, de Costa S, Rogers PJ, Bryce JH, Morris PC, Mitchell WJ, Stewart GG (2003) The effect of proteinase A on foam-active polypeptides during high and low gravity fermentation. J Inst Brew 109:194–202

    Article  CAS  Google Scholar 

  • Brown HT (1916) Reminiscences of fifty years’ experience of the application of scientific method in brewing practice. J Inst Brew 13:265–354

    Google Scholar 

  • Bryce JH, Cooper D, Stewart GG (1997) High gravity brewing and its negative effect on head retention. In: Proceedings of 26th congress of European Brewery Convention, Maastricht, pp 357–365

    Google Scholar 

  • Burhans WC, Weinberger M (2009) Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes? Cell Cycle 8:2300–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmelo V, Bogaerts P, Sá-Correia I (1996) Activity of plasma membrane H+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH. Arch Microbiol 166:315–320

    Article  CAS  PubMed  Google Scholar 

  • Casey GP, Ingledew WM (1983) High gravity brewing: Influence of pitching rate and wort gravity on early yeast viability. J Am Soc Brew Chem 41:148–153

    CAS  Google Scholar 

  • Casey GP, Magnus CA, Ingledew WM (1983) High gravity brewing: nutrient enhanced production of high concentrations of ethanol by brewing yeast. Biotechnol Lett 5:429–434

    Article  CAS  Google Scholar 

  • Casey GP, Magnus CA, Ingledew WM (1984) High-gravity brewing: effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl Environ Microbiol 48:639–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo L, Martínez AI, Gelis S, Ruiz-Herrera J, Valentín E, Sentandreu R (2008) Genomic response programs of Saccharomyces cerevisiae following protoplasting and regeneration. Fungal Genet Biol 45:253–265

    Article  CAS  PubMed  Google Scholar 

  • Castrejon F, Codon AC, Cubero B, Benitez T (2002) Acetaldehyde and ethanol are responsible for mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) in flor yeasts. Syst Appl Microbiol 25:462–467

    Article  CAS  PubMed  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AWY, Brosnan JM, Phister T, Smart KA (2012) Impact of dried, creamed and cake supply formats on the genetic variation and ethanol tolerance of three Saccharomyces cerevisiae distilling strains. J Inst Brew 118:152–162

    Article  CAS  Google Scholar 

  • Chlup PH, Bernard D, Stewart GG (2008) Disc stack centrifuge operating parameters and their impact on yeast physiology. J Inst Brew 114:45–61

    Article  CAS  Google Scholar 

  • Cooper DJ, Stewart GG, Bryce JH (1998) Some reasons why high gravity brewing has a negative effect on head retention. J Inst Brew 104:221–228

    Article  Google Scholar 

  • Cooper DJ, Stewart GG, Bryce JH (2000) Yeast proteolytic activity during high and low gravity wort fermentations and its effect on head retention. J Inst Brew 106:197–201

    Article  Google Scholar 

  • Coote PJ, Billon CM-P, Pennell S, McClure PJ, Ferdinando DP, Cole MB (1995) The use of confocal scanning laser microscopy (CSLM) to study the germination of individual spores of Bacillus cereus. J Microbiol Methods 21:193–208

    Article  Google Scholar 

  • Cunningham S, Stewart GG (1998) Effects of high-gravity brewing and acid washing on brewers’ yeast. J Am Soc Brew Chem 56:12–18

    CAS  Google Scholar 

  • Cunningham S, Stewart GG (2000) Acid washing and serial repitching a brewing ale strain of Saccharomyces cerevisiae in high gravity wort and the role of wort oxygenation conditions. J Inst Brew 106:389–402

    Article  Google Scholar 

  • D’Amore T, Panchal CJ, Stewart GG (1988) Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation. J Appl Environ Microbiol 54:1471–1510

    Google Scholar 

  • D’Amore T, Panchal CJ, Russell I, Stewart GG (1990) A study of ethanol tolerance in yeast. Crit Rev Biotechnol 9:287–304

    Article  PubMed  Google Scholar 

  • D’Amore T, Crumplen R, Stewart GG (1991) The involvement of trehalose in yeast stress tolerance. J Ind Microbiol 7:191–195

    Article  Google Scholar 

  • Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85:253–263

    Article  CAS  PubMed  Google Scholar 

  • Dreyer T, Biedermann K, Ottesen M (1983) Yeast proteinase in beer. Carlsb Res Commun 48:249–255

    Article  CAS  Google Scholar 

  • Dudbridge M (2011) The food industry, handbook of lean manufacturing in the food industry. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Ephrussi B, Hottinguer H (1951) On an unstable cell state in yeast. Cold Spring Harb Symp Quant Biol 16:75–85

    Article  CAS  PubMed  Google Scholar 

  • Erasmus DJ, Cliff M, van Vuuren HJJ (2004) Impact of yeast strain in the production of acetic acid, glycerol, and the sensory attributes of ice wine. Am J Enol Vitic 55:371–378

    CAS  Google Scholar 

  • Eraso P, Gancedo F (1987) Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett 224:187–192

    Article  CAS  PubMed  Google Scholar 

  • Ernandes JR, Williams JW, Russell I, Stewart GG (1993) Respiratory deficiency in brewing yeast strains – effects on fermentation, flocculation, and beer flavor components. J Am Soc Brew Chem 151:16–20

    Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Bamforth CW (2009) Beer foam, achieving a suitable head. In: Bamforth CW (ed) Beer: a quality perspective. Academic Press, Burlington, MA, pp 7–66

    Google Scholar 

  • Ferguson LR, Vonborstel RC (1992) Induction of the cytoplasmic petite mutation by chemical and physical agents in Saccharomyces cerevisiae. Mutat Res 265:103–148

    Article  CAS  PubMed  Google Scholar 

  • Fernandes L, Corte-Real M, Loureiro V, Loureiro-Dias MC, Leao C (1997) Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid. Lett Appl Microbiol 25:249–253

    Article  CAS  PubMed  Google Scholar 

  • Fernandez E, Fernandez M, Moreno F, Rodicio R (1993) Transcriptional regulation of the isocitrate lyase encoding gene in Saccharomyces cerevisiae. FEBS Lett 333:238–242

    Article  CAS  PubMed  Google Scholar 

  • François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145

    Article  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gancedo C, Flores CL (2004) The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359

    Article  CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Michael B, Storz G, Botstein D, Brown Patrick O (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson BR (2011) 125th Anniversary review: improvement of higher gravity brewery fermentation via wort enrichment and supplementation. J Inst Brew 117:268–284

    Article  CAS  Google Scholar 

  • Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Revs 31:535–569

    Article  CAS  Google Scholar 

  • Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ, Linforth RST, Smart KA (2008a) Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation. Yeast 25:549–562

    Article  CAS  PubMed  Google Scholar 

  • Gibson BR, Prescott KA, Smart KA (2008b) Petite mutation in aged and oxidatively stressed ale and lager brewing yeast. Lett Appl Microbiol 46:636–642

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  • Good L, Dowhanick TM, Ernandes JE, Russell I, Stewart GG (1993) Rho-mitochondrial genomes and their influence on adaptation to nutrient stress in lager yeast strains. J Am Soc Brew Chem 5:35–39

    Google Scholar 

  • Gray AS (2013) The scotch whisky industry review, 36th edn. Sutherlands, Edinburgh, Scotland

    Google Scholar 

  • Guillaume C, Delobel P, Sablayrolles JM, Blondin B (2007) Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Appl Environ Microbiol 73:2432–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guldfeldt LU, Arneborg N (1998) Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting individual Saccharomyces cerevisiae cells by fluorescence microscopy. Appl Environ Microbiol 64:530–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallsworth J (1998) Ethanol-induced water stress in yeast. J Ferment Bioeng 85:125–137

    Article  CAS  Google Scholar 

  • Heinisch JJ, Rodicio R (2009) Physical and stress factors in yeast. In: Konig H, Unden G, Frolich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, New York, NY, pp 275–292

    Chapter  Google Scholar 

  • Hill AE (2015) Traditional methods of detection and identification of brewery spoilage organisms. In: Hill AE (ed) Brewing microbiology – managing microbes, ensuring quality and valorising waste. Woodhead Publishing, Cambridge, pp 271–318

    Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S, Mager WH (2003) Yeast stress responses. Springer, Berlin

    Book  Google Scholar 

  • Holweg CL (2007) Living markers for actin block myosin-dependent motility of plant organelles and auxin. Cell Motil Cytoskeleton 64:69–81

    Article  CAS  PubMed  Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680

    Article  CAS  PubMed  Google Scholar 

  • Hu CK, Bai FW, An LJ (2003) Enhancing ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae by Mg2+ via reduction in plasma membrane permeability. Biotechnol Lett 25:1191–1194

    Article  CAS  PubMed  Google Scholar 

  • Hutter A, Oliver SG (1998) Ethanol production using nuclear petite yeast mutants. Appl Microbiol Biotechnol 49:511–516

    Article  CAS  PubMed  Google Scholar 

  • Ibeas JI, Jimenez J (1997) Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Appl Environ Microbiol 63:7–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Tsujimoto Y, Kimura A (1998) Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen activated protein kinase pathway in osmotic stress response. J Biol Chem 273:2977–2983

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Iefuji H, Fujii T, Soga H (2000) Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci Biotechnol Biochem 64:229–236

    Article  CAS  PubMed  Google Scholar 

  • Jeffries T, Jin Y-U (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CL, Kennedy AI, Thurston P, Hodgson JA, Smart KA (2003) Serial repitching fermentation performance and functional biomarkers. In: Smart KA (ed) Brewing yeast fermentation performance. Blackwell Science, Oxford, pp 257–271

    Google Scholar 

  • Jimenez J, Longo E, Benitez T (1988) Induction of petite yeast mutants by membrane-active agents. Appl Environ Microbiol 54:3126–3132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JS, Weber S, Prakash L (1988) The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res 16:7119–7131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalathenos SP, Baranyi J, Sutherland JP, Roberts TA (1995) A response surface study on the role of some environmental factors affecting the growth of Saccharomyces cerevisiae. Int J Food Microbiol 25:63–74

    Article  CAS  PubMed  Google Scholar 

  • Kara BV, Simpson WJ, Hammond JRM (1988) Prediction of the fermentation performance of brewing yeast with the acidification power test. J Inst Brew 94:153–158

    Article  Google Scholar 

  • Kuwayama H, Obara S, Morio T, Katoh M, Urushihara H, Tanaka Y (2002) PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res 30(2):e2

    Article  PubMed  PubMed Central  Google Scholar 

  • Leisegang R, Stahl U (2005) Degradation of a foam-promoting barley protein by a proteinase from brewing yeast. J Inst Brew 111:112–117

    Article  CAS  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism. In: Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maddox IS, Hough JS (1970) Effect of zinc and cobalt on yeast growth and fermentation. J Inst Brew 76:262–264

    Article  CAS  Google Scholar 

  • Maiorella B, Blanch HW, Wilke CR (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 25:103–121

    Article  CAS  PubMed  Google Scholar 

  • Mansure JJC, Panek AD, Crowe LM, Crowe JH (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim Biophys Acta 1191:309–316

    Article  CAS  PubMed  Google Scholar 

  • Marchal R, Bouquelet S, Maujean A (1996) Purification and partial bio-chemical characterization of glycoproteins in champenois Chardonnay wine. J Agric Food Chem 44:1716–1722

    Article  CAS  Google Scholar 

  • Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P (2013) Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains. Yeast 30:365–378

    Article  CAS  PubMed  Google Scholar 

  • Marza E, Camougrand N, Manon S (2002) Bax expression protects yeast plasma membrane against ethanol induced permeabilization. FEBS Lett 521:47–52

    Article  CAS  PubMed  Google Scholar 

  • Meaden PG, Arneborg N, Guldfeldt LU, Siegumfeldt H, Jakobsen M (1999) Endocytosis and vacuolar morphology in Saccharomyces cerevisiae are altered in response to ethanol stress or heat shock. Yeast 15:1211–1222

    Article  CAS  PubMed  Google Scholar 

  • Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O, Yitzhak P (2009) Adaptive prediction of environmental changes by microorganisms. Nature 460:220–224

    Article  CAS  PubMed  Google Scholar 

  • Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913

    Article  CAS  PubMed  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muldbjerg M, Meldal M, Breddam K, Sigsgaard P (1993) Protease activity in beer and correlation of foam. Proc Congr Eur Brew Conv 25:357–364

    Google Scholar 

  • Murray CR, Stewart GG (1991) Experiments with high gravity brewing. Birra et Malto 44:52–64

    Google Scholar 

  • Nguyen HV, Pulvirenti A, Gaillardin C (2000) Rapid differentiation of the closely related Kluyveromyces lactis var. lactis and K. marxianus strains isolated from dairy products using selective media and PCR/RFLP of the rDNA non transcribed spacer 2. Can J Microbiol 46:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Novo MT, Beltran TMJ, Poblet M, Rozès N, Guillamón JM, Mas J (2003) Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Int J Food Microbiol 86:153–161

    Article  CAS  PubMed  Google Scholar 

  • Núñez YP, Carrascosa AV, González R, Polo MC, Martínez-Rodríguez AJ (2005) Effect of accelerated autolysis of yeast on the composition and foaming properties of sparkling wines elaborated by champenoise method. J Agric Food Chem 53:7232–7237

    Article  PubMed  CAS  Google Scholar 

  • Núñez YP, Carrascosa AV, González R, Polo MC, Martínez-Rodríguez AJ (2006) Isolation and characterization of a thermally extracted yeast cell wall fraction potentially useful for improving the foaming properties of sparkling wines. J Agric Food Chem 54:7898–7903

    Article  PubMed  CAS  Google Scholar 

  • Obe G, Ristow H, Herha J (1977) Chromosomal damage by alcohol in vitro and in vivo. Adv Exp Med Biol 85A:47–70

    Article  CAS  PubMed  Google Scholar 

  • Odumeru JA, D’Amore T, Russell I, Stewart GG (1992a) Changes in protein composition of Saccharomyces brewing strains in response to heat shock and ethanol stress. J Ind Microbiol 9:229–234

    Article  CAS  Google Scholar 

  • Odumeru JA, D’Amore T, Russell I, Stewart GG (1992b) Effects of heat shock and ethanol stress on the viability of a Saccharomyces uvarum (carlsbergensis) brewing yeast strain during fermentation of high gravity wort. J Ind Microbiol 10:111–116

    Article  Google Scholar 

  • Odumeru JA, D’Amore T, Russell I, Stewart GG (1993) Alterations in fatty acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock. J Ind Microbiol Biotechnol 11:113–119

    CAS  Google Scholar 

  • Ogden K (1987) Cleansing contaminated pitching yeast with nisin. J Inst Brew 93:302–307

    Article  CAS  Google Scholar 

  • Owades JL (1981) The role of osmotic pressure in high and low gravity fermentations. MBAA Tech Quart 18:163–165

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Panchal CJ, Stewart GG (1980) The effect of osmotic pressure on the production and excretion of ethanol and glycerol by a brewing yeast strain. J Inst Brew 86:207–210

    Article  CAS  Google Scholar 

  • Pascual C, Alonso A, Garcia I, Romay C, Kotyk A (1988) Effect of ethanol on glucose transport, key glycolytic enzymes, and proton extrusion in Saccharomyces cerevisiae. Biotechnol Bioeng 32:374–378

    Article  CAS  PubMed  Google Scholar 

  • Pasteur L (1876) Studies on fermentation. Macmillan, London

    Google Scholar 

  • Pérez-Torrado R, Carrasco P, Gimeno-Alcañiz AAJ, Perez-Ortin JE, Matallana E (2002) Study of the first hours of microvinification by the use of osmotic stress-response genes as probes. Syst Appl Microbiol 25:153–161

    Article  PubMed  Google Scholar 

  • Pfisterer E, Stewart GG (1976) High gravity brewing. Brew Dig 51:34–42

    CAS  Google Scholar 

  • Piddocke M, Kreisz S, Heldt-Hansen HP, Nielsen KF, Olsson L (2009) Physiological characterization of brewer’s yeast in high gravity beer fermentations with glucose or maltose syrups as adjuncts. Appl Microbiol Biotechnol 84:453–464

    Article  CAS  PubMed  Google Scholar 

  • Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127

    Article  CAS  PubMed  Google Scholar 

  • Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    Article  CAS  PubMed  Google Scholar 

  • Powell CD, Diacetis AN (2007) Long term serial repitching and the genetic and phenotypic stability of brewer’s yeast. J Inst Brew 113:67–74

    Article  CAS  Google Scholar 

  • Powell CD, Quain DE, Smart KA (2003) The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res 3:149–157

    Article  CAS  PubMed  Google Scholar 

  • Pratt PL, Bryce JH, Stewart GG (1999) High gravity brewing – an inducer of yeast stress. Brewer’s Guardian 131:28–31

    Google Scholar 

  • Pratt PL, Bryce JH, Stewart GG (2003) The effects of osmotic pressure and ethanol on yeast viability and morphology. J Inst Brew 109:218–228

    Article  CAS  Google Scholar 

  • Pratt PL, Bryce JH, Stewart GG (2007) The yeast vacuole—its role during high gravity wort fermentations. J Inst Brew 113:55–60

    Article  CAS  Google Scholar 

  • Pratt-Marshall PL (2002) High gravity brewing—an inducer of yeast stress. Its effect on cellular morphology and physiology. Ph.D. thesis, Heriot-Watt University, Edinburgh, Scotland

    Google Scholar 

  • Rautio J, Londesborough J (2003) Maltose transport by brewer’s yeasts in brewer’s wort. J Inst Brew 109:251–261

    Article  CAS  Google Scholar 

  • Rees EMR, Stewart GG (1998) Strain specific response of brewer’s yeast strains to zinc concentrations in conventional and high gravity wort. J Inst Brew 104:221–228

    Article  CAS  Google Scholar 

  • Rego A, Costa M, Chaves SR, Matmati N, Pereira H, Sousa MJ, Moradas-Ferreira P, Hannun YA, Costa V, Côrte-Real M (2012) Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS One 7(11):e48571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa MF, Sá-Correia I (1994) Limitations to the use of extracellular acidification for the assessment of plasma membrane H+-ATPase activity and ethanol tolerance in yeasts. Enzyme Microb Technol 16:808–812

    Article  CAS  Google Scholar 

  • Ruis H, Schuller C (1995) Stress signaling in yeast. BioEssays 17:959–965

    Article  CAS  PubMed  Google Scholar 

  • Russell I, Stewart GG (1995) Brewing. Biotechnology 9:419–462 (ed. by H-J Rehm and G. Reed, VCH Publishers, Weinheim, Germany)

    Google Scholar 

  • Russell I, Stewart GG (eds) (2014) Whisky: technology, production and marketing, 2nd edn. Academic Press, Oxford

    Google Scholar 

  • Saerens SM, Verbelen PJ, Vanbeneden N, Thevelein JM, Delvaux FR (2008) Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl Microbiol Biotechnol 80:1039–1051

    Article  CAS  PubMed  Google Scholar 

  • Sano F, Asakawa N, Inoue Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80–87

    Article  CAS  PubMed  Google Scholar 

  • Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011a) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep 16:15–23

    Article  CAS  PubMed  Google Scholar 

  • Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI (2011b) Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res 346:933–938

    Article  CAS  PubMed  Google Scholar 

  • Serrano R (1983) In vivo activation of yeast plasma membrane ATPase. FEBS Lett 156:11–14

    Article  CAS  PubMed  Google Scholar 

  • Sia RAL, Urbonas BL, Sia EA (2003) Effects of ploidy, growth conditions and the mitochondrial nucleoid-associated protein Ilv5p on the rate of mutation of mitochondrial DNA in Saccharomyces cerevisiae. Curr Genet 44:26–37

    Article  CAS  PubMed  Google Scholar 

  • Siddique R, Smart KA (2000) An improved acidification power test. In: Smart KA (ed) Brewing yeast fermentation performance. Blackwell Science, Oxford

    Google Scholar 

  • Simpson WJ (1987a) Synergism between hop resins and phosphoric acid and its relevance to the acid washing of yeast. J Inst Brew 93:405–406

    Article  CAS  Google Scholar 

  • Simpson WJ (1987b) Kinetic studies of the decontamination of yeast slurries with phosphoric acid and added ammonium persulphate and a method for the detection of surviving bacteria involving solid medium repair in the presence of catalase. J Inst Brew 93:313–318

    Article  CAS  Google Scholar 

  • Simpson WJ, Hammond JRM (1989) The response of brewing yeasts to acid washing. J Inst Brew 95:347–354

    Article  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  CAS  PubMed  Google Scholar 

  • Smits GJ, Brul S (2005) Stress tolerance in fungi—to kill a spoilage yeast. Curr Opin Biotechnol 16:225–230

    Article  CAS  PubMed  Google Scholar 

  • Soanes C, Hawker S (2000) Compact Oxford English dictionary of current English. Oxford University Press, Oxford

    Google Scholar 

  • Sorensen SB, Bech LM, Muldbjerg M, Beenfeldt T, Breddam K (1993) Barley lipid transfer protein 1 is involved in beer foam formation. MBAA Tech Quart 30:136–145

    CAS  Google Scholar 

  • Spencer JFT, Spencer DM, Miller R (1983) Inability of petite mutants of industrial yeasts to utilize various sugars and a comparison with the ability of the parent strains to ferment the same sugars microaerophically. Z Naturforsch C 38:405–407

    Google Scholar 

  • Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010a) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24

    CAS  PubMed  Google Scholar 

  • Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010b) Generation and characterization of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37:139–149

    Article  CAS  PubMed  Google Scholar 

  • Stewart GG (1975) Yeast flocculation – practical implications and experimental findings. Brew Dig 50:42–62

    CAS  Google Scholar 

  • Stewart GG (2004) The chemistry of beer instability. J Chem Edu 81:963–968

    Article  CAS  Google Scholar 

  • Stewart GG (2005a) Does the use of high gravity brewing inflict unusual and cruel punishment on yeast? Brauwelt Int 23:422–428

    Google Scholar 

  • Stewart GG (2005b) High gravity brewing as stress for the yeast. Brauwelt 145:920–921

    Google Scholar 

  • Stewart GG (2006) Studies on the uptake and metabolism of wort sugars during brewing fermentations. MBAA Tech Quart 43:265–269

    CAS  Google Scholar 

  • Stewart GG (2008) Esters – the most important group of flavour-active compounds in alcoholic beverages. In: Bryce JH, Piggott JR, Stewart GG (eds) Distilled spirits. Production, technology and innovation. Nottingham University Press, Nottingham, pp 243–250

    Google Scholar 

  • Stewart GG (2009) The IBD Horace Brown Medal Lecture – forty years of brewing research. J Inst Brew 115:3–29

    Article  CAS  Google Scholar 

  • Stewart GG (2010a) The ASBC Award of Distinction Lecture – high gravity brewing and distilling – past experiences and future prospects. J Am Soc Brew Chem 68:1–9

    CAS  Google Scholar 

  • Stewart GG (2010b) Glucose, maltose and maltotriose. Do brewer’s yeast strains care which one? In: Proceedings of 31st convention of the Institute of Brewing and Distilling, Asia Pacific Section, Paper 03

    Google Scholar 

  • Stewart GG (2012a) Biochemistry of brewing. In: NAM E, Shahidi N (eds) Biochemistry of foods. Elsevier, New York, pp 291–318

    Google Scholar 

  • Stewart GG (2012b) Brewing intensification – successes and failures. World Brewing Congress, Portland, Ore. Paper 39

    Google Scholar 

  • Stewart GG (2012c) Fermentation – The black box of the brewing process. In: 32rd Convention of the IBD Asia Pacific Convention, Melbourne, Australia, Paper No 14

    Google Scholar 

  • Stewart GG (2013) Yeast management – culture handling between fermentations. In: Proceedings of 14th convention of the Institute of Brewing and Distilling, Africa Section, Paper No 13–22

    Google Scholar 

  • Stewart GG (2014a) Brewing intensification. American Society for Brewing Chemists, St. Paul, MN

    Google Scholar 

  • Stewart GG (2014b) Yeast mitochondria – their influence on brewer’s yeast fermentation and medical research. MBAA Tech Quart 51:3–11

    Google Scholar 

  • Stewart GG, Russell I (2009) An introduction to brewing science and technology. Series lll, Brewer’s yeast, 2nd ed. The Institute of Brewing and Distilling, London

    Google Scholar 

  • Stewart GG, D’Amore T, Panchal CJ, Russell I (1988a) Factors that influence the ethanol tolerance of brewer’s yeast strains during high gravity wort fermentations. MBAA Tech Quart 25:47–53

    CAS  Google Scholar 

  • Stewart GG, D’Amore T, Panchal CJ, Russell I (1988b) Regulation of sugar uptake in yeasts. In: Proceedings of 20th convention of the Institute of Brewing (Australia and New Zealand Section), Brisbane, pp 169–180

    Google Scholar 

  • Stewart GG, Leiper KA, Miedl M (2008) Bioethanol – the current situation. In: Proceedings of 30th convention of the Institute of Brewing and Distilling, Asia Pacific Section, Paper 10

    Google Scholar 

  • Thomas KC, Ingledew WM (1992) Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J Ind Microbiol 10:61–68

    Article  CAS  Google Scholar 

  • Thomas KC, Hynes SH, Jones AM, Ingledew WM (1993) Production of fuel alcohol from wheat by VHG technology. Appl Biochem Biotechnol 43:211–226

    Article  CAS  Google Scholar 

  • Thurston PA, Quain DE, Tubb RS (1981) The structural and storage carbohydrates of Saccharomyces cerevisiae; changes during the fermentation of wort and a role for glycogen catabolism in lipid biosynthesis. J Inst Brew 87:108–111

    Article  Google Scholar 

  • Thurston PA, Quain DE, Tubb RS (1982) Lipid metabolism and the regulation of volatile ester synthesis in Saccharomyces cerevisiae. J Inst Brew 88:90–94

    Article  CAS  Google Scholar 

  • Treger JM, Schmitt AP, Simon JR, McEntee K (1998) Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J Biol Chem 273:26875–26879

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Orij R, Brul S, Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78:8377–8387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D (2005) Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry. Appl Environ Microbiol 71:1515–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WM (1995) The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev 59:304–322

    PubMed  PubMed Central  Google Scholar 

  • Van Dijck P, Colavizza D, Smet P, Thevelein M (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115

    PubMed  PubMed Central  Google Scholar 

  • Wang ZY, He XP, Zhang BR (2007) Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer’s yeast. Int J Food Microbiol 119:192–199

    Article  CAS  PubMed  Google Scholar 

  • Weber FJ, de Bont JA (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  PubMed  Google Scholar 

  • Wickner W (2002) Yeast vacuoles and membrane fusion pathways. EMBO J 21:1241–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You KM, Rosenfield C-L, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younis OS, Stewart GG (1998) Sugar uptake and subsequent ester and alcohol production in Saccharomyces cerevisiae. J Inst Brew 104:255–264

    Article  CAS  Google Scholar 

  • Younis OS, Stewart GG (1999) Effect of malt wort, very-high-gravity malt wort and very-high-gravity adjunct wort on volatile production in Saccharomyces cerevisiae. J Am Soc Brew Chem 52:38–45

    Google Scholar 

  • Zakrzewska A, van Eikenhorst G, Burggraaff JE, Vis DJ, Hoefsloot H, Delneri D, Oliver SG, Brul S, Smits GJ (2011) Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol Biol Cell 22:4435–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalewski K, Buchholz R (1996) Morphological analysis of yeast cells using an automated image processing system. J Biotechnol 48:243–249

    Article  Google Scholar 

  • Zhang CY, Liu Y-L, Qi Y-N, Zhang J-W, Dai L-H, Lin X, Xiao D-G (2013) Increased esters and decreased alcohols production by brewer’s yeast strains. Eur Food Res Technol 236:1009–1014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, G.G. (2017). Stress Effects on Yeast During Brewing and Distilling Fermentations: High-Gravity Effects. In: Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-69126-8_11

Download citation

Publish with us

Policies and ethics