Skip to main content

Molecular Modelling of Peptide-Based Materials for Biomedical Applications

  • Chapter
  • First Online:
Peptides and Peptide-based Biomaterials and their Biomedical Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1030))

Abstract

The molecular-level interactions between peptides and medically-relevant biomaterials, including nanoparticles, have the potential to advance technologies aimed at improving performance for medical applications including tissue implants and regenerative medicine. Peptides can possess materials-selective non-covalent adsorption properties, which in this instance can be exploited to enhance the biocompatibility and possible multi-functionality of medical implant materials. However, at present, their successful implementation in medical applications is largely on a trial-and-error basis, in part because a deep comprehension of general structure/function relationships at these interfaces is currently lacking. Molecular simulation approaches can complement experimental characterisation techniques and provide a wealth of relevant details at the atomic scale. In this Chapter, progress and prospects for advancing peptide-mediated medical implant surface treatments via molecular simulation is summarised for two of the most widely-found medical implant interfaces, titania and hydroxyapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Addison WN, Masica DL, Gray JJ, McKee MD (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Min Res 25:695–705

    Article  CAS  Google Scholar 

  • Almora-Barrios N, de Leeuw NH (2010) Modelling the interaction of a Hyp-pro-Gly peptide with hydroxyapatite surfaces in aqueous environment. Cryst Eng Comm 12:960–967

    Article  CAS  Google Scholar 

  • Astala R, Stott MJ (2008) First-principles study of hydroxyapatite surfaces and water adsorption. Phys Rev B 78:075427

    Article  Google Scholar 

  • Baino F, Vitale-Brovarone C (2014) Bioceramics in ophthalmology. Acta Biomater 10:3372–3397

    Article  CAS  PubMed  Google Scholar 

  • Brandt EG, Lyubartsev AP (2015) Molecular dynamics simulations of adsorption of amino acid side chain analogues and a titanium binding peptide on the TiO2 (100) surface. J Phys Chem C 119:18126–18139

    Article  CAS  Google Scholar 

  • Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J Amer Chem Soc 128:13435–13441

    Article  CAS  Google Scholar 

  • Care A, Bergquist PL, Sunna A (2015) Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 33:259–268

    Article  CAS  PubMed  Google Scholar 

  • Carravetta V, Monti S (2006) Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations. J Phys Chem B 110:6160–6169

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Q, Shen JW, Pan HH, Wu T (2007) Adsorption of leucine-rich amelogenin protein on hydroxyapatite (001) surface through -COO- claws. J Phys Chem C 111:1284–1290

    Article  CAS  Google Scholar 

  • Chen MJ, Wu CY, Song DP, Li K (2010) RGD tripeptide onto perfect and grooved rutile surfaces in aqueous solution: adsorption behaviors and dynamics. Phys Chem Chem Phys 12:406–415

    Article  CAS  PubMed  Google Scholar 

  • Corno M, Busco C, Bolis V, Tosoni S, Ugliengo P (2009) Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study. Langmuir 25:2188–2198

    Article  CAS  PubMed  Google Scholar 

  • de Leeuw NH (2010) Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mat Chem 20:5376–5389

    Article  Google Scholar 

  • Filgueiras MRT, Mkhonto D, de Leeuw NH (2006) Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces. J Cryst Growth 294:60–68

    Article  CAS  Google Scholar 

  • Friedrichs W, Koppen S, Langel W (2013) Titanium binding dodecapeptides and the impact of water structure. Surf Sci 617:42–52

    Article  CAS  Google Scholar 

  • Gungormus M, Fong H, Kim IW, Evans JS, Tamerler C, Sarikaya M (2008) Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules 9:966–973

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann S, Dufner H, Brickmann J, Kast SM, Berry RS (2003) Potential energy function for apatites. Phys Chem Chem Phys 5:635–639

    Article  CAS  Google Scholar 

  • Huq NL, Cross KJ, Reynolds EC (2000) Molecular modelling of a multiphosphorylated sequence motif bound to hydroxyapatite surfaces. J Mol Model 6:35–47

    Article  CAS  Google Scholar 

  • Iucci G, Battocchio C, Dettin M, Gambaretto R, Di Bello C, Borgatti F, Carravetta V, Monti S, Polzonetti G (2007) Peptides adsorption on TiO2 and au: molecular organization investigated by NEXAFS, XPS and IR. Surf Sci 601:3843–3849

    Article  CAS  Google Scholar 

  • Khatayevich D, Gungormus M, Yazici H, So C, Cetinel S, Ma H, Jen A, Tamerler C, Sarikaya M (2010) Biofunctionalization of materials for implants using engineered peptides. Acta Biomater 6:4634–4641

    Article  CAS  PubMed  Google Scholar 

  • Khoo XJ, Hamilton P, O'Toole GA, Snyder BD, Kenan DJ, Grinstaff MW (2009) Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal. J Amer Chem Soc 131:10992–10997

    Article  CAS  Google Scholar 

  • Lai ZB, Wang MC, Yan C, Oloyede A (2014) Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces. J Mech Behav Biomed Mater 36:12–20

    Article  CAS  PubMed  Google Scholar 

  • Lai ZB, Bai RX, Yan C (2017) Effect of nano-scale constraint on the mechanical behaviour of osteopontin-hydroxyapatite interfaces. Comput Mater Sci 126:59–65

    Article  CAS  Google Scholar 

  • Lee WT, Dove MT, Salje EKH (2000) Surface relaxations in hydroxyapatite. J Phys Condens Matter 12:9829–9841

    Article  CAS  Google Scholar 

  • Li C, Monti S, Carravetta V (2012) Journey toward the surface: how glycine adsorbs on titania in water solution. J Phys Chem C 116:18318–18326

    Article  CAS  Google Scholar 

  • Lin TJ, Heinz H (2016) Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces. J Phys Chem C 120:4975–4992

    Article  CAS  Google Scholar 

  • Liu ST, Meng XY, Perez-Aguilar JM, Zhou RH (2016) An in silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution. Sci Rep 6:37761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou ZY, Zeng Q, Chu X, Yang F, He DW, Yang ML, Xiang ML, Zhang XD, Fan HS (2012) First-principles study of the adsorption of lysine on hydroxyapatite (100) surface. Appl Surf Sci 258:4911–4916

    Article  CAS  Google Scholar 

  • Meyers SR, Hamilton PT, Walsh EB, Kenan DJ, Grinstaff MW (2007) Endothelialization of titanium surfaces. Adv Mater 19:2492–2498

    Article  CAS  Google Scholar 

  • Monti S, Walsh TR (2010) Free energy calculations of the adsorption of amino acid analogues at the aqueous titania interface. J Phys Chem C 114:22197–22206

    Article  CAS  Google Scholar 

  • Monti S, Carravetta V, Zhang WH, Yang JL (2007) Effects due to interadsorbate interactions on the dipeptide/TiO2 surface binding mechanism investigated by molecular dynamics simulations. J Phys Chem C 111:7765–7771

    Article  CAS  Google Scholar 

  • Monti S, Carravetta V, Battocchio C, Iucci G, Polzonetti G (2008) Peptide/TiO2 surface interaction: a theoretical and experimental study on the structure of adsorbed ALA-GLU and ALA-LYS. Langmuir 24:3205–3214

    Article  CAS  PubMed  Google Scholar 

  • Monti S, van Duin ACT, Kim SY, Barone V (2012) Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: computational investigations in the gas phase and in solution. J Phys Chem C 116:5141–5150

    Article  CAS  Google Scholar 

  • Pan HH, Tao JH, Xu XR, Tang RK (2007) Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level. Langmuir 23:8972–8981

    Article  CAS  PubMed  Google Scholar 

  • Paszti Z, Guczi L (2009) Amino acid adsorption on hydrophilic TiO2: a sum frequency generation vibrational spectroscopy study. Vib Spectrosc 50:48–56

    Article  CAS  Google Scholar 

  • Predota M, Bandura AV, Cummings PT, Kubicki JD, Wesolowski DJ, Chialvo AA, Machesky ML (2004) Electric double layer at the rutile (110) surface. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. J Phys Chem B 108:12049–12060

    Article  CAS  Google Scholar 

  • Puddu V, Slocik JM, Naik RR, Perry CC (2013) Titania binding peptides as templates in the biomimetic synthesis of stable titania nanosols: insight into the role of buffers in peptide-mediated mineralization. Langmuir 29:9464–9472

    Article  CAS  PubMed  Google Scholar 

  • Rimola A, Corno M, Zicovich-Wilson CM, Ugliengo P (2008) Ab initio modeling of protein/biomaterial interactions: glycine adsorption at hydroxyapatite surface. J Amer Chem Soc 130:16181–16183

    Article  CAS  Google Scholar 

  • Roddick-Lanzilotta A, McQuillan AJ (1999) An in situ infrared spectroscopic investigation of lysine peptide and polylysine adsorption to TiO2 from aqueous solutions. J Colloid Interface Sci 217:194–202

    Article  CAS  PubMed  Google Scholar 

  • Roddick-Lanzilotta AD, McQuillan AJ (2000) An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO2: implications for the biocompatibility of titanium. J Colloid Interface Sci 227:48–54

    Article  CAS  PubMed  Google Scholar 

  • Roddick-Lanzilotta AD, Connor PA, McQuillan AJ (1998) An in situ infrared spectroscopic study of the adsorption of lysine to TiO2 from an aqueous solution. Langmuir 14:6479–6484

    Article  CAS  Google Scholar 

  • Roy MD, Stanley SK, Amis EJ, Becker ML (2008) Identification of a highly specific hydroxyapatite-binding peptide using phage display. Adv Mater 20:1830–1836

    Article  CAS  Google Scholar 

  • Sano KI, Shiba K (2003) A hexapeptide motif that electrostatically binds to the surface of titanium. J Amer Chem Soc 125:14234–14235

    Article  CAS  Google Scholar 

  • Schneider J, Colombi Ciacchi L (2011) A classical potential to model the adsorption of biological molecules on oxidized titanium surfaces. J Chem Theory Comput 7:473–484

    Google Scholar 

  • Schneider J, Colombi Ciacchi L (2012) Specific material recognition by small peptides mediated by the interfacial solvent structure. J Amer Chem Soc 134:2407–2413

    Google Scholar 

  • Segvich SJ, Smith HC, Kohn DH (2009) The adsorption of preferential binding peptides to apatite-based materials. Biomaterials 30:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Skelton AA, Walsh TR (2007) Interaction of liquid water with the rutile TiO2 (110) surface. Mol Simulat 33:379–389

    Article  CAS  Google Scholar 

  • Skelton AA, Liang TN, Walsh TR (2009) Interplay of sequence, conformation, and binding at the peptide-titania interface as mediated by water. ACS Appl Mater Interfaces 1:1482–1491

    Article  CAS  PubMed  Google Scholar 

  • Slepko A, Demkov AA (2013) First principles study of hydroxyapatite surface. J Chem Phys 139:044714

    Article  PubMed  Google Scholar 

  • Suchanek W, Yoshimura M (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mat Res 13:94–117

    Article  CAS  Google Scholar 

  • Sultan AM, Hughes ZE, Walsh TR (2014) Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides. Langmuir 30:13321–13329

    Article  CAS  PubMed  Google Scholar 

  • Sultan AM, Westcott ZC, Hughes ZE, Palafox-Hernandez JP, Giesa T, Puddu V, Buehler MJ, Perry CC, Walsh TR (2016) Aqueous peptide-TiO2 interfaces: Isoenergetic binding via either entropically or enthalpically driven mechanisms. ACS Appl Mater Interfaces 8:18620–18630

    Article  CAS  PubMed  Google Scholar 

  • Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182:1567–1589

    Article  CAS  Google Scholar 

  • van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  • Villarreal-Ramirez E, Garduno-Juarez R, Gericke A, Boskey A (2014) The role of phosphorylation in dentin phosphoprotein peptide absorption to hydroxyapatite surfaces: a molecular dynamics study. Connect Tissue Res 55:134–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CY, Skelton AA, Chen MJ, Vlcek L, Cummings PT (2011) Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: the effect of Na+ on peptide adsorption. J Phys Chem C 115:22375–22386

    Article  CAS  Google Scholar 

  • Wu CY, Skelton AA, Chen MJ, Vlcek L, Cummings PT (2012) Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: the effect of cation mediation on Asp adsorption. Langmuir 28:2799–2811

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Chen MJ, Skelton AA, Cummings PT, Zheng T (2013) Adsorption of arginine-glycine-aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. ACS Appl Mater Interfaces 5:2567–2579

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Xu DG, Yang ML, Zhang XD (2016) Surface structure of hydroxyapatite from simulated annealing molecular dynamics simulations. Langmuir 32:4643–4652

    Article  CAS  PubMed  Google Scholar 

  • Xu ZJ, Yang Y, Wang ZQ, Mkhonto D, Shang C, Liu ZP, Cui Q, Sahai N (2014) Small molecule-mediated control of hydroxyapatite growth: free energy calculations benchmarked to density functional theory. J Comput Chem 35:70–81

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari M, Kato T, Matsuzaka K, Hayakawa T, Shiba K (2010) Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling 26:103–110

    Article  CAS  PubMed  Google Scholar 

  • Yucesoy DT, Hnilova M, Boone K, Arnold PM, Snead ML, Tamerler C (2015) Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties. JOM 67:754–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahn D, Hochrein O (2003) Computational study of interfaces between hydroxyapatite and water. Phys Chem Chem Phys 5:4004–4007

    Article  CAS  Google Scholar 

  • Zhang Z, Fenter P, Cheng L, Sturchio NC, Bedzyk MJ, Predota M, Bandura A, Kubicki JD, Lvov SN, Cummings PT, Chialvo AA, Ridley MK, Benezeth P, Anovitz L, Palmer DA, Machesky ML, Wesolowski DJ (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties. Langmuir 20:4954–4969

    Article  CAS  PubMed  Google Scholar 

  • Zhao WL, Xu ZJ, Yang Y, Sahai N (2014) Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study. Langmuir 30:13283–13292

    Article  CAS  PubMed  Google Scholar 

  • Zhao WL, Xu ZJ, Cui Q, Sahai N (2016) Predicting the structure-activity relationship of hydroxyapatite-binding peptides by enhanced-sampling molecular simulation. Langmuir 32:7009–7022

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Wu C, Chen M, Zhang Y, Cummings PT (2016) Molecular mechanics of the cooperative adsorption of a Pro-Hyp-Gly tripeptide on a hydroxylated rutile TiO2(110) surface mediated by calcium ions. Phys Chem Chem Phys 18:19757–19764

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

TRW gratefully acknowledges past funding and support from the EPSRC, AFOSR, Deakin University, veski, ARC and the AOARD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany R. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Walsh, T.R. (2017). Molecular Modelling of Peptide-Based Materials for Biomedical Applications. In: Sunna, A., Care, A., Bergquist, P. (eds) Peptides and Peptide-based Biomaterials and their Biomedical Applications. Advances in Experimental Medicine and Biology, vol 1030. Springer, Cham. https://doi.org/10.1007/978-3-319-66095-0_3

Download citation

Publish with us

Policies and ethics