Skip to main content

The Extracellular Matrix as a Target for Biophysical and Molecular Magnetic Resonance Imaging

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

All tissues and organs are composed of cells and extracellular matrix (ECM). The components of the ECM have important functional and structural roles in tissues. On the one hand, the ECM often dominates the biomechanical properties of soft tissues and provides mechanical support to the tissue. On the other hand, ECM components maintain tissue homeostasis, pH, and hydration of the micromilieu and, via signal transduction, also play a key role in ECM-cell interactions which in turn control cell migration, differentiation, growth, and death. Inflammation, fibrosis, tumor invasion, and injury are associated with the transition of the ECM from homeostasis to remodeling which can dramatically alter the biochemical and biomechanical properties of ECM components. Hence, it is possible to detect and characterize disease by sensing biochemical and biomechanical changes of the ECM when appropriate imaging methods are used. This chapter discusses ECM-specific magnetic resonance imaging (MRI) based on contrast agents and elastography from a clinical radiological perspective in a variety of diseases including atherosclerosis, cardiomyopathy, inflammation, and liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ascoli M. Bulletin of the National Research Council, 69, Bulletin of the National Research Council, National Research Council, U.S. Washington: National Academies; 1929.

    Google Scholar 

  2. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alberts B, et al. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  4. Murphy W, Black J, Hastings G. Handbook of biomaterial properties. 2nd ed. New York: Springer; 2016.

    Google Scholar 

  5. Spinale FG, Zile MR. Integrating the myocardial matrix into heart failure recognition and management. Circ Res. 2013;113(6):725–38.

    Article  CAS  PubMed  Google Scholar 

  6. Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb. 2003;10(5):267–74.

    Article  CAS  PubMed  Google Scholar 

  7. Smith PD, et al. “GAG-ing with the neuron”: the role of glycosaminoglycan patterning in the central nervous system. Exp Neurol. 2015;274(Pt B):100–14.

    Article  CAS  PubMed  Google Scholar 

  8. Baiocchini A, et al. Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS One. 2016;11(3):e0151736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422–33.

    Article  CAS  PubMed  Google Scholar 

  10. Pozzi A, Yurchenco PD, Iozzo RV. The nature and biology of basement membranes. Matrix Biol. 2017;57-58:1–11.

    Article  CAS  PubMed  Google Scholar 

  11. Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol. 1992;27(1-2):93–127.

    Article  CAS  PubMed  Google Scholar 

  12. Timpl R, Brown JC. The laminins. Matrix Biol. 1994;14(4):275–81.

    Article  CAS  PubMed  Google Scholar 

  13. Timpl R. Macromolecular organization of basement membranes. Curr Opin Cell Biol. 1996;8(5):618–24.

    Article  CAS  PubMed  Google Scholar 

  14. Timpl R, et al. Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions. Ciba Found Symp. 1984;108:25–43.

    CAS  PubMed  Google Scholar 

  15. Aumailley M, et al. Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur J Biochem. 1989;184(1):241–8.

    Article  CAS  PubMed  Google Scholar 

  16. Tsiper MV, Yurchenco PD. Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci. 2002;115(Pt 5):1005–15.

    CAS  PubMed  Google Scholar 

  17. Charonis AS, et al. Binding of laminin to type IV collagen: a morphological study. J Cell Biol. 1985;100(6):1848–53.

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki T, et al. Deficiency of β1 integrins in teratoma interferes with basement membrane assembly and laminin-1 expression. Exp Cell Res. 1998;238(1):70–81.

    Article  CAS  PubMed  Google Scholar 

  19. Aumailley M, et al. A simplified laminin nomenclature. Matrix Biol. 2005;24(5):326–32.

    Article  CAS  PubMed  Google Scholar 

  20. Veitch DP, et al. Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J Biol Chem. 2003;278(18):15661–8.

    Article  CAS  PubMed  Google Scholar 

  21. Koshikawa N, et al. Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. J Biol Chem. 2005;280(1):88–93.

    Article  CAS  PubMed  Google Scholar 

  22. Koshikawa N, et al. Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB J. 2004;18(2):364–6.

    Article  CAS  PubMed  Google Scholar 

  23. Qin Y, et al. Laminins and cancer stem cells: partners in crime? Semin Cancer Biol. 2016;45:3.

    Article  PubMed  CAS  Google Scholar 

  24. Feller W. An introduction to probability theory and its applications. New York: Willey; 1968.

    Google Scholar 

  25. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  PubMed  Google Scholar 

  26. Voet D, Voet J, Pratt CW. Fundamentals of biochemistry. New York: Wiley; 1999.

    Google Scholar 

  27. Lieleg O, Ribbeck K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 2011;21(9):543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Esko JD, Kimata K, Lindahl U. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, et al., editors. Essentials of glycobiology. New York: Cold Spring Harbor; 2009.

    Google Scholar 

  29. Sasaki N, et al. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. J Immunol. 2004;172(6):3830–5.

    Article  CAS  PubMed  Google Scholar 

  30. Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6(7):530–41.

    Article  PubMed  CAS  Google Scholar 

  31. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007;446(7139):1030–7.

    Article  CAS  PubMed  Google Scholar 

  32. Gubbiotti MA, Neill T, Iozzo RV. A current view of perlecan in physiology and pathology: a mosaic of functions. Matrix Biol. 2017;57-58:285–98.

    Article  CAS  PubMed  Google Scholar 

  33. Ricard-Blum S, Lisacek F. Glycosaminoglycanomics: where we are. Glycoconj J. 2017;34:339–49.

    Article  CAS  PubMed  Google Scholar 

  34. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bishnoi M, et al. Chondroitin sulphate: a focus on osteoarthritis. Glycoconj J. 2016;33(5):693–705.

    Article  CAS  PubMed  Google Scholar 

  36. Zamfir AD, et al. Brain chondroitin/dermatan sulfate, from cerebral tissue to fine structure: extraction, preparation, and fully automated chip-electrospray mass spectrometric analysis. In: Rédini F, editor. Proteoglycans: methods and protocols. Totowa: Humana Press; 2012. p. 145–59.

    Chapter  Google Scholar 

  37. Malmström A, et al. Iduronic acid in chondroitin/dermatan sulfate: biosynthesis and biological function. J Histochem Cytochem. 2012;60(12):916–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mongiat M, et al. Extracellular matrix, a hard player in angiogenesis. Int J Mol Sci. 2016;17(11):E1822.

    Article  PubMed  CAS  Google Scholar 

  39. Mercier F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci. 2016;73(24):4661–74.

    Article  CAS  PubMed  Google Scholar 

  40. Sethi MK, Zaia J. Extracellular matrix proteomics in schizophrenia and Alzheimer‘s disease. Anal Bioanal Chem. 2017;409(2):379–94.

    Article  CAS  PubMed  Google Scholar 

  41. Xu D, Esko JD. Demystifying heparan sulfate-protein interactions. Annu Rev Biochem. 2014;83:129–57.

    Article  CAS  PubMed  Google Scholar 

  42. Mizumoto S, Yamada S, Sugahara K. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins. Curr Opin Struct Biol. 2015;34:35–42.

    Article  CAS  PubMed  Google Scholar 

  43. Meneghetti MC, et al. Heparan sulfate and heparin interactions with proteins. J R Soc Interface. 2015;12(110):0589.

    Article  PubMed  CAS  Google Scholar 

  44. Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol. 2006;6(9):633–43.

    Article  CAS  PubMed  Google Scholar 

  45. Pomin VH. Sulfated glycans in inflammation. Eur J Med Chem. 2015;92:353–69.

    Article  CAS  PubMed  Google Scholar 

  46. Jin-Ping L. Heparin, heparan sulfate and heparanase in cancer: remedy for metastasis? Anti Cancer Agents Med Chem. 2008;8(1):64–76.

    Article  Google Scholar 

  47. Maytin EV. Hyaluronan: more than just a wrinkle filler. Glycobiology. 2016;26(6):553–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laurent TC. The chemistry, biology and medical applications of hyaluronan and its derivatives. London: Portland Press; 1998.

    Google Scholar 

  49. Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl. 1993;39:3–9.

    CAS  PubMed  Google Scholar 

  50. Brandt KD, Smith GN Jr, Simon LS. Intraarticular injection of hyaluronan as treatment for knee osteoarthritis: what is the evidence? Arthritis Rheum. 2000;43(6):1192–203.

    Article  CAS  PubMed  Google Scholar 

  51. Cohen MD. Hyaluronic acid treatment (viscosupplementation) for OA of the knee. Bull Rheum Dis. 1998;47(7):4–7.

    Google Scholar 

  52. George E. Intra-articular hyaluronan treatment for osteoarthritis. Ann Rheum Dis. 1998;57(11):637–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Viola M, et al. Extracellular matrix in atherosclerosis: hyaluronan and proteoglycans insights. Curr Med Chem. 2016;23(26):2958–71.

    Article  CAS  PubMed  Google Scholar 

  54. Ando A, et al. Mechanism of tumor and liver concentration of 111In and 169Yb: 111In and 169Yb binding substances in tumor tissues and liver. Eur J Nucl Med. 1982;7(7):298–303.

    Article  CAS  PubMed  Google Scholar 

  55. Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 2006;20(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  56. Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of glycobiology. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  57. Mitra AK, et al. Dermatan sulfate: molecular conformations and interactions in the condensed state. J Mol Biol. 1983;169(4):873–901.

    Article  CAS  PubMed  Google Scholar 

  58. Corte MD, et al. Analysis of the expression of hyaluronan in intraductal and invasive carcinomas of the breast. J Cancer Res Clin Oncol. 2010;136(5):745–50.

    Article  CAS  PubMed  Google Scholar 

  59. Takeuchi J, et al. Variation in glycosaminoglycan components of breast tumors. Cancer Res. 1976;36(7 PT 1):2133–9.

    CAS  PubMed  Google Scholar 

  60. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15(12):1243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rowlands D, Sugahara K, Kwok J. Glycosaminoglycans and glycomimetics in the central nervous system. Molecules. 2015;20(3):3527.

    Article  PubMed  CAS  Google Scholar 

  62. Moretto P, et al. Regulation of hyaluronan synthesis in vascular diseases and diabetes. J Diabetes Res. 2015;2015:167283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Abdel-Hamid NM. Premalignant variations in extracellular matrix composition in chemically induced hepatocellular carcinoma in rats. J Membr Biol. 2009;230(3):155–62.

    Article  CAS  PubMed  Google Scholar 

  64. Schwertfeger KL, et al. Hyaluronan, inflammation, and breast cancer progression. Front Immunol. 2015;6:236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kolarova H, et al. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediat Inflamm. 2014;2014:694312.

    Article  CAS  Google Scholar 

  66. Gouverneur M, et al. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol. 2006;290(1):H458–2.

    Article  CAS  PubMed  Google Scholar 

  67. Elhadj S, Akers RM, Forsten-Williams K. Chronic pulsatile shear stress alters insulin-like growth factor-I (IGF-I) binding protein release in vitro. Ann Biomed Eng. 2003;31(2):163–70.

    Article  PubMed  Google Scholar 

  68. Pahakis MY, et al. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun. 2007;355(1):228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tarbell JM, Cancel LM. The glycocalyx and its significance in human medicine. J Intern Med. 2016;280(1):97–113.

    Article  CAS  PubMed  Google Scholar 

  70. Rabenstein DL, Robert JM, Peng J. Multinuclear magnetic resonance studies of the interaction of inorganic cations with heparin. Carbohydr Res. 1995;278(2):239–56.

    Article  CAS  PubMed  Google Scholar 

  71. Casu B, et al. Stereoselective effects of gadolinium ions on the relaxation properties of 13C and 1H nuclei of aldohexuronic acids and poly(glycosiduronic acids). Carbohydr Res. 1975;41(1):C6–8.

    Article  CAS  Google Scholar 

  72. Rej RN, Holme KR, Perlin AS. Marked stereoselectivity in the binding of copper ions by heparin. Contrasts with the binding of gadolinium and calcium ions. Carbohydr Res. 1990;207(2):143–52.

    Article  CAS  PubMed  Google Scholar 

  73. Joffe P, Thomsen HS, Meusel M. Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol. 1998;5(7):491–502.

    Article  CAS  PubMed  Google Scholar 

  74. Gibby WA, Gibby KA, Gibby WA. Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Investig Radiol. 2004;39(3):138–42.

    Article  Google Scholar 

  75. Marckmann P, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–62.

    Article  PubMed  Google Scholar 

  76. McDonald RJ, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275(3):772–82.

    Article  PubMed  Google Scholar 

  77. Radbruch A, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275(3):783–91.

    Article  PubMed  Google Scholar 

  78. Kanda T, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276(1):228–32.

    Article  PubMed  Google Scholar 

  79. Runge VM. Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus. Investig Radiol. 2016;51(5):273–9.

    CAS  Google Scholar 

  80. Taupitz M, et al. Gadolinium-containing magnetic resonance contrast media: investigation on the possible transchelation of Gd(3)(+) to the glycosaminoglycan heparin. Contrast Media Mol Imaging. 2013;8(2):108–16.

    Article  CAS  PubMed  Google Scholar 

  81. Schlemm L, et al. Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Mult Scler. 2017;23:963.

    Article  CAS  PubMed  Google Scholar 

  82. Theocharis AD, et al. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.

    Article  CAS  PubMed  Google Scholar 

  83. Kolodgie FD, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22(10):1642–8.

    Article  CAS  PubMed  Google Scholar 

  84. Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res. 2004;94(9):1158–67.

    Article  CAS  PubMed  Google Scholar 

  85. Chen W, et al. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging. 2013;6(3):373–84.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stary HC, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92(5):1355–74.

    Article  CAS  PubMed  Google Scholar 

  87. Virmani R, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    Article  CAS  PubMed  Google Scholar 

  88. Daugherty A, Cassis LA. Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep. 2002;4(3):222–7.

    Article  PubMed  Google Scholar 

  89. Humphrey JD. Possible mechanical roles of glycosaminoglycans in thoracic aortic dissection and associations with dysregulated transforming growth factor-beta. J Vasc Res. 2013;50(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  90. Rienks M, et al. Myocardial extracellular matrix. An ever-changing and diverse entity. Circ Res. 2014;114(5):872–88.

    Article  CAS  PubMed  Google Scholar 

  91. Shetlar MR, Shetlar CL, Kischer CW. Healing of myocardial infarction in animal models. Tex Rep Biol Med. 1979;39:339–55.

    CAS  PubMed  Google Scholar 

  92. Judd JT, et al. Myocardial connective tissue metabolism in response to injury. II. Investigation of the mucopolysaccharides involved in isoproterenol-induced necrosis and repair in rat hearts. Circ Res. 1970;26(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  93. Judd JT, Wexler BC. Sulfur 35 uptake in acid mucopolysaccharides of the rat heart following injury. Am J Phys. 1973;224(2):312–7.

    CAS  Google Scholar 

  94. Sykova E, et al. Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus. 2002;12(2):269–79.

    Article  CAS  PubMed  Google Scholar 

  95. Sack I, et al. The impact of aging and gender on brain viscoelasticity. NeuroImage. 2009;46(3):652–7.

    Article  PubMed  Google Scholar 

  96. van Horssen J, et al. Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: potential role in influx and transport of leukocytes. J Neuropathol Exp Neurol. 2005;64(8):722–9.

    Article  PubMed  Google Scholar 

  97. van Horssen J, et al. Extensive extracellular matrix depositions in active multiple sclerosis lesions. Neurobiol Dis. 2006;24(3):484–91.

    Article  PubMed  CAS  Google Scholar 

  98. Back SA, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72.

    Article  CAS  PubMed  Google Scholar 

  99. Baumgart DC, et al. US-based real-time elastography for the detection of fibrotic gut tissue in patients with stricturing Crohn disease. Radiology. 2015;275(3):889–99.

    Article  PubMed  Google Scholar 

  100. Burke JP, et al. Fibrogenesis in Crohn’s disease. Am J Gastroenterol. 2007;102(2):439–48.

    Article  CAS  PubMed  Google Scholar 

  101. Latella G, et al. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2015;50(1):53–65.

    Article  CAS  PubMed  Google Scholar 

  102. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Investig. 2007;117(3):539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mallat A, Lotersztajn S. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. Am J Physiol Cell Physiol. 2013;305(8):C789–99.

    Article  CAS  PubMed  Google Scholar 

  104. Reiter R, et al. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis. J Biomech. 2014;47(7):1665–74.

    Article  PubMed  Google Scholar 

  105. Guedes PLR, et al. Increase of glycosaminoglycans and metalloproteinases 2 and 9 in liver extracellular matrix on early stages of extrahepatic cholestasis. Arq Gastroenterol. 2014;51:309–15.

    Article  PubMed  Google Scholar 

  106. Scott JE, et al. The chemical morphology of extracellular matrix in experimental rat liver fibrosis resembles that of normal developing connective tissue. Virchows Arch. 1994;424(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  107. Bonekamp S, et al. Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol. 2009;50(1):17–35.

    Article  PubMed  Google Scholar 

  108. Sack I, et al. Structure sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter. 2013;9(24):5672–80.

    Article  CAS  Google Scholar 

  109. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219(2):316–33.

    Article  CAS  PubMed  Google Scholar 

  110. Geven EJW, et al. S100A8/A9, a potent serum and molecular imaging biomarker for synovial inflammation and joint destruction in seronegative experimental arthritis. Arthritis Res Ther. 2016;18(1):247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Withana NP, et al. Dual-modality activity-based probes as molecular imaging agents for vascular inflammation. J Nucl Med. 2016;57(10):1583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jorgensen NP, et al. Cholinergic PET imaging in infections and inflammation using 11C-donepezil and 18F-FEOBV. Eur J Nucl Med Mol Imaging. 2017;44(3):449–58.

    Article  PubMed  CAS  Google Scholar 

  113. Bwatanglang IB, et al. Folic acid targeted Mn:ZnS quantum dots for theranostic applications of cancer cell imaging and therapy. Int J Nanomedicine. 2016;11:413–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chatterjee S, et al. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget. 2016;7(9):10215–27.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chen C, et al. Molecular imaging with MRI: potential application in pancreatic cancer. Biomed Res Int. 2015;2015:10.

    Google Scholar 

  116. Eisenmenger LB, et al. Advances in PET imaging of degenerative, cerebrovascular, and traumatic causes of dementia. Semin Nucl Med. 2016;46(1):57–87.

    Article  PubMed  Google Scholar 

  117. Gomperts SN, et al. Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol. 2016;73(11):1334–41.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Farrar CT, et al. RNA aptamer probes as optical imaging agents for the detection of amyloid plaques. PLoS One. 2014;9(2):e89901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Huppertz A, et al. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology. 2004;230(1):266–75.

    Article  PubMed  Google Scholar 

  120. Hamm B, et al. Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology. 1995;195(3):785–92.

    Article  CAS  PubMed  Google Scholar 

  121. Hamm B, et al. Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide. J Magn Reson Imaging. 1994;4(5):659–68.

    Article  CAS  PubMed  Google Scholar 

  122. Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol. 2003;13(6):1266–76.

    PubMed  Google Scholar 

  123. Roach MR, Burton AC. The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol. 1957;35(8):681–90.

    Article  CAS  PubMed  Google Scholar 

  124. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hrabětová S, Nicholson C. Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. In: Michael A, Borland L, editors. Electrochemical methods for neuroscience. Boca Raton: CRC Press/Taylor & Francis; 2007.

    Google Scholar 

  126. Carulli D, et al. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol. 2005;15(1):116–20.

    Article  PubMed  CAS  Google Scholar 

  127. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Asplund A, et al. Macrophages exposed to hypoxia secrete proteoglycans for which LDL has higher affinity. Atherosclerosis. 2011;215(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  129. Karangelis DE, et al. Glycosaminoglycans as key molecules in atherosclerosis: the role of versican and hyaluronan. Curr Med Chem. 2010;17(33):4018–26.

    Article  CAS  PubMed  Google Scholar 

  130. Tran-Lundmark K, et al. Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res. 2008;103(1):43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Theocharis AD, et al. Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. Adv Pharmacol. 2006;53:281–95.

    Article  CAS  PubMed  Google Scholar 

  132. Posnansky O, et al. Fractal network dimension and viscoelastic powerlaw behavior: I. A modeling approach based on a coarse-graining procedure combined with shear oscillatory rheometry. Phys Med Biol. 2012;57(12):4023–40.

    Article  PubMed  Google Scholar 

  133. Guo J, et al. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography. Phys Med Biol. 2012;57(12):4041–53.

    Article  PubMed  Google Scholar 

  134. Freimann FB, et al. MR elastography in a murine stroke model reveals correlation of macroscopic viscoelastic properties of the brain with neuronal density. NMR Biomed. 2013;26(11):1534–9.

    Article  PubMed  Google Scholar 

  135. Klein C, et al. Enhanced adult neurogenesis increases brain stiffness: in vivo magnetic resonance elastography in a mouse model of dopamine depletion. PLoS One. 2014;9(3):e92582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Trotter JA, Purslow PP. Functional morphology of the endomysium in series fibered muscles. J Morphol. 1992;212(2):109–22.

    Article  CAS  PubMed  Google Scholar 

  137. Asbach P, et al. Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology. 2010;257(1):80–6.

    Article  PubMed  Google Scholar 

  138. Ingber DE. Mechanobiology and diseases of mechanotransduction. Ann Med. 2003;35(8):564–77.

    Article  PubMed  Google Scholar 

  139. DuFort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 2011;12(5):308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nelson CM, Bissell MJ. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol. 2005;15(5):342–52.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mizuguchi S, et al. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature. 2003;423(6938):443–8.

    Article  CAS  PubMed  Google Scholar 

  142. Soleman S, et al. Targeting the neural extracellular matrix in neurological disorders. Neuroscience. 2013;253:194–213.

    Article  CAS  PubMed  Google Scholar 

  143. Happel M, Frischknecht R. Neuronal plasticity in the juvenile and adult brain regulated by the extracellular matrix. In: Travascio F, editor. Composition and function of the extracellular matrix in the human body. Rijeka: Intech; 2016.

    Google Scholar 

  144. Pizzorusso T, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298(5596):1248–51.

    Article  CAS  PubMed  Google Scholar 

  145. Levental KR, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Caravan P, et al. Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed Engl. 2007;46(43):8171–3.

    Article  CAS  PubMed  Google Scholar 

  147. Fuchs BC, et al. Molecular MRI of collagen to diagnose and stage liver fibrosis. J Hepatol. 2013;59(5):992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Polasek M, et al. Molecular MR imaging of liver fibrosis: a feasibility study using rat and mouse models. J Hepatol. 2012;57(3):549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Spuentrup E, et al. Molecular magnetic resonance imaging of myocardial perfusion with EP-3600, a collagen-specific contrast agent: initial feasibility study in a swine model. Circulation. 2009;119(13):1768–75.

    Article  CAS  PubMed  Google Scholar 

  150. Sanders HM, et al. Morphology, binding behavior and MR-properties of paramagnetic collagen-binding liposomes. Contrast Media Mol Imaging. 2009;4(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  151. Phinikaridou A, et al. Vascular remodeling and plaque vulnerability in a rabbit model of atherosclerosis: comparison of delayed-enhancement MR imaging with an elastin-specific contrast agent and unenhanced black-blood MR imaging. Radiology. 2014;271(2):390–9.

    Article  PubMed  Google Scholar 

  152. Okamura H, et al. Assessment of elastin deficit in a Marfan mouse aneurysm model using an elastin-specific magnetic resonance imaging contrast agent. Circ Cardiovasc Imaging. 2014;7(4):690–6.

    Article  PubMed  Google Scholar 

  153. Protti A, et al. Assessment of myocardial remodeling using an elastin/tropoelastin specific agent with high field magnetic resonance imaging (MRI). J Am Heart Assoc. 2015;4(8):e001851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Wildgruber M, et al. Assessment of myocardial infarction and postinfarction scar remodeling with an elastin-specific magnetic resonance agent. Circ Cardiovasc Imaging. 2014;7(2):321–9.

    Article  PubMed  Google Scholar 

  155. Makowski MR, et al. Noninvasive assessment of atherosclerotic plaque progression in ApoE-/- mice using susceptibility gradient mapping. Circ Cardiovasc Imaging. 2011;4(3):295–303.

    Article  PubMed  Google Scholar 

  156. Stone GW, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  157. Makowski MR, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17(3):383–8.

    Article  CAS  PubMed  Google Scholar 

  158. Meding J, et al. Magnetic resonance imaging of atherosclerosis by targeting extracellular matrix deposition with Gadofluorine M. Contrast Media Mol Imaging. 2007;2(3):120–9.

    Article  CAS  PubMed  Google Scholar 

  159. Ando A, et al. Mechanism of tumor and liver concentration of 67Ga: 67Ga binding substances in tumor tissues and liver. Int J Nucl Med Biol. 1983;10(1):1–9.

    Article  PubMed  Google Scholar 

  160. Ando A, et al. Affinity of 167Tm-citrate for tumor and liver tissue. Eur J Nucl Med. 1983;8(10):440–6.

    Article  CAS  PubMed  Google Scholar 

  161. Kasokat T, Urich K. Quantification of dechelation of gadopentetate dimeglumine in rats. Arzneimittelforschung. 1992;42(6):869–76.

    CAS  PubMed  Google Scholar 

  162. Wedeking P, et al. Pharmacokinetic analysis of blood distribution of intravenously administered 153Gd-labeled Gd(DTPA)2- and 99mTc(DTPA) in rats. Magn Reson Imaging. 1990;8(5):567–75.

    Article  CAS  PubMed  Google Scholar 

  163. Knowles BR, et al. Pharmacokinetic modeling of delayed gadolinium enhancement in the myocardium. Magn Reson Med. 2008;60(6):1524–30.

    Article  CAS  PubMed  Google Scholar 

  164. Goldfarb JW, Zhao W, Han J. Three-compartment (3C) pharmacokinetic modeling is more accurate than two-compartment (2C) modeling of myocardial fibrosis gadolinium kinetics. J Cardiovasc Magn Reson. 2012;14(1):P248.

    Article  PubMed Central  Google Scholar 

  165. Port RE, et al. Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging. 1999;10(3):233–41.

    Article  CAS  PubMed  Google Scholar 

  166. Port RE, et al. Noncompartmental kinetic analysis of DCE-MRI data from malignant tumors: application to glioblastoma treated with bevacizumab. Magn Reson Med. 2010;64(2):408–17.

    CAS  PubMed  Google Scholar 

  167. Franiel T, et al. Differentiation of prostate cancer from normal prostate tissue: role of hotspots in pharmacokinetic MRI and histologic evaluation. AJR Am J Roentgenol. 2010;194(3):675–81.

    Article  PubMed  Google Scholar 

  168. Lüdemann L, et al. Comparison of dynamic contrast-enhanced MRI with WHO tumor grading for gliomas. Eur Radiol. 2001;11(7):1231–41.

    Article  PubMed  Google Scholar 

  169. Lancelot E. Revisiting the pharmacokinetic profiles of gadolinium-based contrast agents: differences in long-term biodistribution and excretion. Investig Radiol. 2016;51(11):691–700.

    Article  CAS  Google Scholar 

  170. Frank JS, Langer GA. The myocardial interstitium: its structure and its role in ionic exchange. J Cell Biol. 1974;60(3):586–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Robic C, et al. The role of phosphate on Omniscan(®) dechelation: an in vitro relaxivity study at pH 7. Biometals. 2011;24(4):759–68.

    Article  CAS  PubMed  Google Scholar 

  172. Idee JM, et al. Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: an update. Radiol Clin N Am. 2009;47(5):855–69. vii

    Article  PubMed  Google Scholar 

  173. Murata N, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol. 2016;51(7):447–53.

    Article  CAS  Google Scholar 

  174. Kanda T, et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015;275(3):803–9.

    Article  PubMed  Google Scholar 

  175. Hale CW. Histochemical demonstration of acid polysaccharides in animal tissues. Nature. 1946;157:802.

    Article  CAS  PubMed  Google Scholar 

  176. Scott JE, Dorling J. Differential staining of acid glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solutions. Histochemie. 1965;5(3):221–33.

    Article  CAS  PubMed  Google Scholar 

  177. Taupitz M, et al. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging. 2000;12(6):905–11.

    Article  CAS  PubMed  Google Scholar 

  178. Wagner S, et al. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Investig Radiol. 2002;37(4):167–77.

    Article  CAS  Google Scholar 

  179. Wagner S, et al. Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization. Int J Nanomedicine. 2013;8:767–79.

    PubMed  PubMed Central  Google Scholar 

  180. Scharlach C, et al. Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining. Nanomedicine. 2015;11(5):1085–95.

    Article  CAS  PubMed  Google Scholar 

  181. Poller WC, et al. Uptake of citrate-coated iron oxide nanoparticles into atherosclerotic lesions in mice occurs via accelerated transcytosis through plaque endothelial cells. Nano Res. 2016;9(11):3437–52.

    Article  CAS  Google Scholar 

  182. Tysiak E, et al. Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI. J Neuroinflammation. 2009;6:20.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Millward JM, et al. Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation. ASN Neuro. 2013;5(1):e00110.

    PubMed  PubMed Central  Google Scholar 

  184. Ludwig A, et al. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans. Basic Res Cardiol. 2013;108(2):328.

    Article  PubMed  CAS  Google Scholar 

  185. Tschoegl NW. The phenomenological theory of linear viscoelastic behavior. Berlin: Springer; 1989.

    Book  Google Scholar 

  186. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463(7280):485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Plodinec M, et al. The nanomechanical signature of breast cancer. Nat Nanotechnol. 2012;7(11):757–65.

    Article  CAS  PubMed  Google Scholar 

  188. Jonietz E. Mechanics: the forces of cancer. Nature. 2012;491(7425):S56–7.

    Article  PubMed  Google Scholar 

  189. Fung Y. Biomechanics: mechanical properties of living tissue. New York: Springer-Verlag; 1993.

    Book  Google Scholar 

  190. Fabry B, et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E Stat Nonlinear Soft Matter Phys. 2003;68(4 Pt 1):041914.

    Article  CAS  Google Scholar 

  191. Lambert SA, et al. Bridging three orders of magnitude: multiple scattered waves sense fractal microscopic structures via dispersion. Phys Rev Lett. 2015;115(9):094301.

    Article  PubMed  CAS  Google Scholar 

  192. Ozawa H, et al. Comparison of spinal cord gray matter and white matter softness: measurement by pipette aspiration method. J Neurosurg. 2001;95(2 Suppl):221–4.

    CAS  PubMed  Google Scholar 

  193. Guck J, et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J. 2001;81(2):767–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tan K, et al. Characterising soft tissues under large amplitude oscillatory shear and combined loading. J Biomech. 2013;46(6):1060–6.

    Article  PubMed  Google Scholar 

  195. Kiss MZ, Varghese T, Hall TJ. Viscoelastic characterization of in vitro canine tissue. Phys Med Biol. 2004;49(18):4207–18.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Parker KJ. Experimental evaluations of the microchannel flow model. Phys Med Biol. 2015;60(11):4227–42.

    Article  CAS  PubMed  Google Scholar 

  197. Bilston LE, Thibault LE. The mechanical properties of the human cervical spinal cord in vitro. Ann Biomed Eng. 1996;24(1):67–74.

    CAS  PubMed  Google Scholar 

  198. Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol. 2007;52(6):1565–76.

    Article  PubMed  Google Scholar 

  199. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging. 2013;37(3):544–55.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Othman SF, et al. Microscopic magnetic resonance elastography (microMRE). Magn Reson Med. 2005;54(3):605–15.

    Article  PubMed  Google Scholar 

  201. Urayama K, Kawamura T, Kohjiya S. Structure-mechanical property correlations of model siloxane elastomers with controlled network topology. Polymer. 2009;50(2):347–56.

    Article  CAS  Google Scholar 

  202. Mendoza-Novelo B, et al. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater. 2011;7(3):1241–8.

    Article  CAS  PubMed  Google Scholar 

  203. Al Jamal R, Roughley PJ, Ludwig MS. Effect of glycosaminoglycan degradation on lung tissue viscoelasticity. Am J Physiol Lung Cell Mol Physiol. 2001;280(2):L306–15.

    Article  CAS  PubMed  Google Scholar 

  204. Ipek-Ugay S, et al. Tabletop magnetic resonance elastography for the measurement of viscoelastic parameters of small tissue samples. J Magn Reson. 2015;251:13–8.

    Article  CAS  PubMed  Google Scholar 

  205. Tzschatzsch H, et al. Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves. Med Image Anal. 2016;30:1–10.

    Article  PubMed  Google Scholar 

  206. Hirsch S, Braun J, Sack I. Magnetic resonance elastography: physical background and medical applications. Weinheim: Wiley-VCH; 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Taupitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ariza de Schellenberger, A., Bergs, J., Sack, I., Taupitz, M. (2018). The Extracellular Matrix as a Target for Biophysical and Molecular Magnetic Resonance Imaging. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics