Skip to main content

Endophytic Phytohormones and Their Role in Plant Growth Promotion

  • Chapter
  • First Online:
Functional Importance of the Plant Microbiome

Abstract

Endophytes are microorganisms that almost every plant harbors. Endophytes often exist within the plant as members of communities comprised of a variety of different microbes. Endophytes are better adapted and protected by their host plants, and, in terms of possible practical application, are considered superior to their rhizospheric counterparts. Like the more well-studied rhizospheric plant growth-promoting bacteria (PGPB), endophytic PGPB utilize a number of different mechanisms to facilitate plant growth and productivity. To this end, various mechanisms used by endophytes are considered and discussed. Due to the environmentally friendly nature and plant growth promotion capabilities of endophytes, it is believed that endophytes have the potential to replace or augment many of the chemicals that are currently used in agricultural practice including fertilizers, pesticides, and chemical remediation agents for a number of environmental hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynch JM, editor. The rhizoshere. Chichester, UK: Wiley-Interscience; 1990.

    Google Scholar 

  2. Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012;2012:963401.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rashid S, Charles TC, Glick BR. Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol. 2012;61:217–24.

    Article  Google Scholar 

  4. Reiter B, Sessitsch A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol. 2006;52(2):140–9.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact. 2006;19(8):827–37.

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi DY, Palumbo JD. Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF, editors. Microbial endophytes. New York: Marcel Dekker, Inc.; 2000. p. 199–233.

    Google Scholar 

  7. Doty SL. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 2008;179(2):318–33.

    Article  CAS  PubMed  Google Scholar 

  8. Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92–9.

    Article  CAS  PubMed  Google Scholar 

  9. Ali S, Charles TC, Glick BR. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem. 2014a;80:160–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ali S, Charles TC, Glick BR. Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol. 2012;113(5):1139–44.

    Article  CAS  PubMed  Google Scholar 

  11. Grossmann K. Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci. 2010;66(2):113–20.

    CAS  PubMed  Google Scholar 

  12. Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek. 2014;106(1):85–125.

    Article  CAS  PubMed  Google Scholar 

  13. Hardoim PR, van Overbeek LS, Elsas JDv. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16(10):463–71.

    Article  CAS  PubMed  Google Scholar 

  14. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31(4):425–48.

    Article  CAS  PubMed  Google Scholar 

  15. Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell. 2011;23(2):550–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41(2):109–17.

    Article  CAS  Google Scholar 

  17. Patten CL, Glick BR. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol. 2002;48(7):635–42.

    Article  CAS  PubMed  Google Scholar 

  18. Apine OA, Jadhav JP. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol. 2011;110(5):1235–44.

    Article  CAS  PubMed  Google Scholar 

  19. Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol. 1995;21(1):1–18.

    Article  PubMed  Google Scholar 

  20. Davies PJ. Plant hormones: physiology, biochemistry, and molecular biology. Boston: Kluwer Academic; 1995.

    Book  Google Scholar 

  21. Kunkel BN, Chen Z. Virulence strategies of plant pathogenic bacteria. In: Dworkin M, editor. The prokaryotes. A handbook on biology of bacteria, ecophysiology and biochemistry. New York: Springer; 2006. p. 421–40.

    Google Scholar 

  22. Rezzonico E, Flury N, Meins F Jr, Beffa R. Transcriptional down-regulation by abscisic acid of pathogenesis-related β-1,3-glucanase genes in tobacco cell cultures. Plant Physiol. 1998;117(2):585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shinshi H, Mohnen D, Meins F Jr. Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci U S A. 1987;84(1):89–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miliūtė I, Buzaitė O. IAA production and other plant growth promoting traits of endophytic bacteria from apple tree. Biologija. 2011;57(2):98–102.

    Google Scholar 

  25. Vendan RT, Yu YJ, Lee SH, Rhee YH. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol. 2010;48(5):559–65.

    Article  CAS  PubMed  Google Scholar 

  26. Lacuna PT, Azevedo JL, editors. Endophytic bacteria: a biotechnological potential in agrobiology system. Berlin: Springer; 2013.

    Google Scholar 

  27. Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6(12):1244–51.

    Article  CAS  PubMed  Google Scholar 

  28. Assumpção LDC, Lacava PT, Dias AC, de Azevedo JL, Menten JOM. Diversity and biotechnological potential of endophytic bacterial community of soybean seeds. Pesqui Agropecu Bras. 2009;44(5):503–10.

    Article  Google Scholar 

  29. Etesami H, Alikhani HA, Hosseini HM. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX. 2015;2:72–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol. 2015;35(1):62–74.

    Article  CAS  PubMed  Google Scholar 

  31. Bömke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry. 2009;70(15–16):1876–93.

    Article  PubMed  Google Scholar 

  32. Hedden P, Phillips AL, Rojas MC. Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul. 2002;20:319–31.

    Article  Google Scholar 

  33. Nett RS, Montanares M, Marcassa A, Lu X, Nagel R, Charles TC, Hedden P, Rojas MC, Peters RJ. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat Chem Biol. 2017;13(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  34. Atzorn R, Crozier A, Wheeler CT, Sandberg G. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta. 1988;175(4):532–8.

    Article  CAS  PubMed  Google Scholar 

  35. Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul. 1998;24(1):7–11.

    Article  Google Scholar 

  36. Bottini R, Fulchieri M, Pearce D, Pharis RP. Identification of gibberellins A1, A3, and Iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 1989;90(1):45–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crozier A, Arruda P, Jasmin J, Monteiro AM, Sandberg G. Analysis of Indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol. 1988;54:2833–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan AL, Waqas M, Kang S, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung H, Lee I. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol. 2014b;52(8):689–95.

    Article  CAS  PubMed  Google Scholar 

  39. Afzal Khan S, Hamayun M, Kim H, Yoon H, Lee I, Kim J. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J Microbiol Biotechnol. 2009;25(5):829–33.

    Article  Google Scholar 

  40. Hamayun M, Khan SA, Khan MA, Khan AL, Kang S, Kim S, Joo G, Lee I. Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol. 2009a;25(10):1785–92.

    Article  CAS  Google Scholar 

  41. Hamayun M, Khan SA, Kim H, Chaudhary MF, Hwang Y, Shin D, Kim I, Lee B, Lee I. Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J Microbiol Biotechnol. 2009b;19(6):560–5.

    CAS  PubMed  Google Scholar 

  42. Khan AL, Hamayun M, Kim Y, Kang S, Lee J, Lee I. Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem. 2011;46(2):440–7.

    Article  CAS  Google Scholar 

  43. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Al-Rawahi A, Al-Hosni K, Kim M, Adnan M, Lee I. Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of Moringa peregrina produce gibberellins and improve rice plant growth. J Plant Interact. 2014a;9(1):731–7.

    Article  CAS  Google Scholar 

  44. Leitão AL, Enguita FJ. Gibberellins in Penicillium strains: challenges for endophyte-plant host interactions under salinity stress. Microbiol Res. 2016;183:8–18.

    Article  PubMed  Google Scholar 

  45. Waqas M, Khan AL, Kamran M, Hamayun M, Kang S, Kim Y, Lee I. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules. 2012;17(9):10754–73.

    Article  CAS  PubMed  Google Scholar 

  46. Greene EM. Cytokinin production by microorganisms. Bot Rev. 1980;46(1):25–74.

    Article  CAS  Google Scholar 

  47. Bhore SJ, Nithaya R, Loh CY. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation. 2010;5(5):191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bhore SJ, Sathisha G. Screening of endophytic colonizing bacteria for cytokinin-like compounds: crude cell-free broth of endophytic colonizing bacteria is unsuitable in cucumber cotyledon bioassay. World J Agric Sci. 2010;6(4):345–52.

    CAS  Google Scholar 

  49. Xu J, Li X, Luo L. Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol. 2012;78(22):8056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  51. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci. 2007;26(5–6):227–42.

    Article  CAS  Google Scholar 

  52. Honma M. Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1-carboxylate deaminase. Agric Biol Chem. 1985;49(3):567–71.

    CAS  Google Scholar 

  53. Honma M. Enzymatic determination of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 1983;47(3):617–8.

    CAS  Google Scholar 

  54. Honma M, Smmomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 1978;42(10):1825–31.

    CAS  Google Scholar 

  55. Honma M, Kawai J, Yamada M. Identification of the reactive sulfhydryl group of 1-aminocyclopropane-1-carboxylate deaminase. Biosci Biotechnol Biochem. 1993a;57(12):2090–3.

    Article  CAS  PubMed  Google Scholar 

  56. Honma M, Kirihata M, Uchimura Y, Ichimoto I. Enzymatic deamination of (±)-2-methyl- and (s)-2,2-dimethyl-1-aminocyclopropane-1-carboxylic acid. Biosci Biotechnol Biochem. 1993b;57(4):659–61.

    Article  CAS  Google Scholar 

  57. Hontzeas N, Saleh SS, Glick BR. Changes in gene expression in canola roots induced by ACC-deaminase- containing plant-growth-promoting bacteria. Mol Plant-Microbe Interact. 2004a;17(8):865–71.

    Article  CAS  PubMed  Google Scholar 

  58. Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta Proteins Proteomics. 2004b;1703(1):11–9.

    Article  CAS  Google Scholar 

  59. Jacobson CB, Pasternak JJ, Glick BR. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol. 1994;40(12):1019–25.

    Article  CAS  Google Scholar 

  60. Jia Y, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem. 1999;63(3):542–9.

    Article  CAS  PubMed  Google Scholar 

  61. Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M. Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem. 1998;123(6):1112–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ose T, Fujino A, Yao M, Watanabe N, Honma M, Tanaka I. Reaction intermediate structures of 1-aminocyclopropane-1-carboxylate deaminase: insight into PLP-dependent cyclopropane ring-opening reaction. J Biol Chem. 2003;278(42):41069–76.

    Article  CAS  PubMed  Google Scholar 

  63. Stearns JC, Woody OZ, McConkey BJ, Glick BR. Effects of bacterial ACC deaminase on Brassica napus gene expression. Mol Plant-Microbe Interact. 2012;25(5):668–76.

    Article  CAS  PubMed  Google Scholar 

  64. Walsh C, Pascal RA Jr, Johnston M, Raines R, Dikshit D, Krantz A, Honma M. Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-l-carboxylate deaminase from Pseudomonas sp. Biochemistry. 1981;20(26):7509–19.

    Article  CAS  PubMed  Google Scholar 

  65. Christen P, Metzler DE. Transaminases. New York: John Wiley and Sons; 1985.

    Google Scholar 

  66. Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett. 2005;251(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  67. Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol. 1998;190(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  68. Penrose DM, Moffatt BA, Glick BR. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol. 2001;47(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  69. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol. 2005;55(3):1187–92.

    Article  CAS  PubMed  Google Scholar 

  70. Sun Y, Cheng Z, Glick BR. The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett. 2009;296(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  71. Abeles FB, Morgan PW, Salveit ME. Ethylene in plant biology. 2nd ed. San Diego: Academic Press; 1992. p. 414.

    Google Scholar 

  72. Frankenberger WT, Arshad M. Microbial synthesis of auxins. In: Arshad M, Frankenberger WT, editors. Phytohormones in soils. New York: Dekker; 1995. p. 35–71.

    Google Scholar 

  73. Glick BR. Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol. 2004;56:291–312.

    Article  CAS  PubMed  Google Scholar 

  74. Jackson MB. Ethylene in root growth and development. In: Mattoo AK, Suttle JC, editors. The plant hormone ethylene. Boca Raton, FL: CRC; 1991. p. 169–81.

    Google Scholar 

  75. Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodine C, Rangel WM, Nicolaus B, Vangronsveld J. Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric. 2016;3:1.

    Article  Google Scholar 

  76. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee I. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol. 2016;21:58–64.

    Article  CAS  Google Scholar 

  77. Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol. 2009;75(20):6581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Raweekul W, Wuttitummaporn S, Sodchuen W, Kittiwongwattana C. Plant growth promotion by endophytic bacteria Isolated from rice (Oryza sativa). Thammasat Int J Sci Technol. 2016;21(1):6–17.

    Google Scholar 

  79. Jasim B, Joseph AA, John CM, Mathew J, Radhakrishnan EK. Isolation and characterization of plant growth promotingendophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech. 2014;4:197–204.

    Article  CAS  PubMed  Google Scholar 

  80. Lowman JS, Lava-Chavez A, Kim-Dura S, Flinn B, Nowak J, Mei C. Switchgrass field performance on two soils as affected by bacterization of seedlings with Burkholderia phytofirmans strain PsJN. Bioenergy Res. 2015;8(1):440–9.

    Article  Google Scholar 

  81. Kim-Dura S, Lowman S, Zhang S, Mei C. Growth promotion of switchgrass by bacterial endophyte Pantoea agglomerans strain PaKM isolated from seeds. J Pathol Microbiol. 2016;1(2):1007.

    Google Scholar 

  82. Gamalero E, Marzachì C, Galetto L, Veratti F, Massa N, Bona E, Novello G, Glick BR, Ali S, Cantamessa S, D’Agostino G, Berta G. An 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-expressing endophyte increases plant resistance to flavescence dorée phytoplasma infection. Plant Biosyst. 2016;(151):331–340.

    Google Scholar 

  83. Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol. 2015;25(7):1119–28.

    Article  CAS  PubMed  Google Scholar 

  84. Yaish MW, Antony I, Glick BR. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek. 2015;107(6):1519–32.

    Article  CAS  PubMed  Google Scholar 

  85. Barnawal D, Bharti N, Tripathi A, Pandey SS, Chanotiya CS, Kalra A. ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul. 2016;35(2):553–64.

    Article  CAS  Google Scholar 

  86. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol. 2007;53(11):1195–202.

    Article  CAS  PubMed  Google Scholar 

  87. Jung HW, Kim W, Hwang BK. Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ. 2003;26(6):915–28.

    Article  CAS  PubMed  Google Scholar 

  88. Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact. 2005;18(2):169–78.

    Article  CAS  PubMed  Google Scholar 

  89. Ali S, Duan J, Charles TC, Glick BR. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol. 2014b;343:193–8.

    Article  CAS  PubMed  Google Scholar 

  90. Rahemi M, Jamali B. Carnation flower senescence as influenced by nickel, cobalt and silicon. J Biol Environ Sci. 2011;5:147–52.

    Google Scholar 

  91. Reid MS, Wu M. Ethylene and flower senescence. Plant Growth Regul. 1992;11(1):37–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimaila Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ali, S., Charles, T.C., Glick, B.R. (2017). Endophytic Phytohormones and Their Role in Plant Growth Promotion. In: Doty, S. (eds) Functional Importance of the Plant Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-65897-1_6

Download citation

Publish with us

Policies and ethics