Skip to main content

Endophyte-Promoted Nutrient Acquisition: Phosphorus and Iron

  • Chapter
  • First Online:
Functional Importance of the Plant Microbiome

Abstract

This chapter reviews the literature relating to the role of mutualistic fungal and bacterial endophytes in the acquisition of phosphorus (P) and iron (Fe) with respect to improving plant growth and health. Although the review has a focus on endophytes there is a continuum here at many levels with respect to the rhizosphere and rhizosphere microorganisms. The chapter explores multiple lines of evidence that demonstrate the functional role of P and Fe solubilization and acquisition systems by plant-associated microbes isolated from the plant microbiota and the attempts to identify the mechanisms used to enhance supply of these often limiting nutrients to the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995;270:26723–6.

    Article  CAS  PubMed  Google Scholar 

  2. Chhabra S, Brazil D, Morrissey J, Burke JI, O’Gara FN, Dowling D. Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiology. 2013;2:717–24.

    CAS  Google Scholar 

  3. Sashidhar B, Podile AR. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol. 2010;109:1–12.

    CAS  PubMed  Google Scholar 

  4. Li G, Kronzucker HJ, Shi W. The response of the root apex in plant adaptation to iron heterogeneity in soil. Front Plant Sci. 2016;7:344.

    PubMed  PubMed Central  Google Scholar 

  5. Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta. 2002;216:23–37.

    Article  CAS  PubMed  Google Scholar 

  6. Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003;157:423–47.

    Article  CAS  Google Scholar 

  7. Gilroy S, Jones DL. Through form to function: root hair development and nutrient uptake. Trends Plant Sci. 2000;5:56–60.

    Article  CAS  PubMed  Google Scholar 

  8. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol. 2003;6:280–7.

    Article  PubMed  CAS  Google Scholar 

  9. Lynch JP, Brown KM. Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil. 2001;237:225–37.

    Google Scholar 

  10. Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. Phosphorus dynamics: from soil to plant. Plant Physiol. 2011;156:997–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raghothama KG. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:665–93.

    Article  CAS  PubMed  Google Scholar 

  12. Clark RB, Zeto SK. Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr. 2000;23:867–902.

    Article  CAS  Google Scholar 

  13. Johri AK, Oelmüller R, Dua M, Yadav V, Kumar M, Tuteja N, et al. Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Front Microbiol. 2015;6:984.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Behie SW, Padilla-Guerrero IE, Bidochka MJ. Nutrient transfer to plants by phylogenetically diverse fungi suggests convergent evolutionary strategies in rhizospheric symbionts. Commun Integr Biol. 2013;6:e22321.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Compant S, Clement C, Sessitsch A. Plant growth promoting bacteria in the rhizosphere and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Plant Phys Biochem. 2010;42:669–7.

    CAS  Google Scholar 

  16. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot. 2013;100:1738–50.

    Article  PubMed  Google Scholar 

  17. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 2009;321:305–39.

    Article  CAS  Google Scholar 

  18. Berendsen RL, Pieterse CMJ, Bakker P. The Rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–6.

    Article  CAS  PubMed  Google Scholar 

  19. Berg G, Rybakova G, Koberl M. The plant microbiome explored: implications for experimental botany. J Exp Bot. 2015; doi:10.1093/jxb/erv466.

  20. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the plant microbiome of the plant holobiont. New Phytol. 2015;206:1196–206.

    Article  PubMed  Google Scholar 

  21. Pii Y, Borruso L, Brusetti L, Crecchio C, Cesco S. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem. 2016;99:39–48.

    Article  CAS  PubMed  Google Scholar 

  22. Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J. Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol. 2016;7:341.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mei C, Flinn BS. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol. 2010;4:81–95.

    Article  CAS  PubMed  Google Scholar 

  24. Richardson AE, Lynch JP, Ryan PR, Delhaize E, Andrew Smith F, Smith SE, Harvey PR, Ryan MH, Veneklass EJ, Lambers H, Oberson A, Culvenor RJ, Simpson RJ. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil. 2011;349:121–56.

    Article  CAS  Google Scholar 

  25. Spaepen S, Vanderleyden J. Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. 2011;3 doi:10.1101/cshperspect.a001438.

  26. Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002;154:275–304.

    Article  Google Scholar 

  27. Corradi N, Brachmann A. Fungal mating in the most widespread plant symbionts? Trends Plant Sci. 2017;22:175–83.

    Article  CAS  PubMed  Google Scholar 

  28. Mandyam K, Jumpponen A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol. 2005;53:173–89.

    Article  Google Scholar 

  29. Jumpponen A, Trappe JM. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 1998;140:295–310.

    Article  Google Scholar 

  30. Delaux P-M, Varala K, Edger PP, Coruzzi GM, Pires JC, Ané J-M. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet. 2014;10:e1004487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Oelmüller R, Sherameti I, Tripathi S, Varma A. Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis. 2009;49:1–17.

    Article  CAS  Google Scholar 

  32. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, et al. Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol. 2016;7:332.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dobbelaere S, Okon Y. The plant growth-promoting effect and plant responses. In: Elmerich C, Newton WE, editors. Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Netherlands: Springer; 2007. p. 145–70.

    Chapter  Google Scholar 

  34. Rascovan N, Carbonetto B, Perrig D, Díaz M, Canciani W, Abalo M, Alloati J, González-Anta G, Vazquez MP. Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep. 2016;6:28084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suman A, Yadav AN, Verma P. Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R, editors. Microbial inoculants in sustainable agricultural productivity. India: Springer; 2016. p. 117–43.

    Chapter  Google Scholar 

  36. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Spring. 2013;2:587.

    Article  CAS  Google Scholar 

  37. Ahmed E, Holmström SJM. Siderophores in environmental research: roles and applications. Microb Biotechnol. 2014;7:196–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jansson M. Phosphate uptake and utilization by bacteria and algae. Hydrobiologia. 1988;170:177–89.

    Article  CAS  Google Scholar 

  39. Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 2012;63:131–52.

    Article  CAS  PubMed  Google Scholar 

  40. Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 1998;116:447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol. 2015;6:745.

    Google Scholar 

  42. Jog R, Pandya M, Nareshkumar G, Rajkumar S. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology. 2014;160:778–88.

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Fan J-B, Du L, Xu H, Zhang Q-H, He Y-Q. The application of phosphate solubilizing endophyte Pantoea dispersa triggers the microbial community in red acidic soil. Appl Soil Ecol. 2014;84:235–44.

    Article  Google Scholar 

  44. Kim KY, Jordan D, McDonald GA. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem. 1998;30:995–1003.

    Article  CAS  Google Scholar 

  45. Mehta P, Walia A, Kakkar N, Shirkot CK. Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus. Acta Physiol Plant. 2014;36:2033–45.

    Article  CAS  Google Scholar 

  46. Maccheroni W Jr, Azevedo JL. Synthesis and secretion of phosphatases by endophytic isolates of Colletotrichum musae grown under conditions of nutritional starvation. J Gen Appl Microbiol. 1998;44:381–7.

    Article  CAS  Google Scholar 

  47. Rodríguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999;17:319–39.

    Article  PubMed  Google Scholar 

  48. Smith FW, Mudge SR, Rae AL, Glassop D. Phosphate transport in plants. Plant Soil. 2003;248:71–83.

    Article  CAS  Google Scholar 

  49. Pao SS, Paulsen IT, Saier MH Jr. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62:1–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Saier MH, Reizer J. Families and super families of transport proteins common to prokaryotes and eukaryotes. Curr Opin Struct Biol. 1991;1:362–8.

    Article  CAS  Google Scholar 

  51. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, et al. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem. 2010;285:26532–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM. Crystal structure of a eukaryotic phosphate transporter. Nature. 2013;496:533–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim SA, Guerinot ML. Mining iron: iron uptake and transport in plants. FEBS Lett. 2007;581:2273–80.

    Article  CAS  PubMed  Google Scholar 

  54. Lemanceau P, Expert D, Gaymard F, Bakker PAHM, Briat JF. Role of iron in plant–microbe interactions. Adv Bot Res. 2009;51:491–549.

    Article  CAS  Google Scholar 

  55. Conte SS, Walker EL. Transporters contributing to iron trafficking in plants. Mol Plant. 2011;4:464–76.

    Article  CAS  PubMed  Google Scholar 

  56. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature. 2001;409:346–9.

    Article  CAS  PubMed  Google Scholar 

  57. Taurian T, Anzuay MS, Ludueña LM, et al. Effects of single and co-inoculation with native phosphate solubilising strain Pantoea sp J49 and the symbiotic nitrogen fixing bacterium Bradyrhizobium sp SEMIA 6144 on peanut (Arachis hypogaea L.) growth. Symbiosis. 2012;59:77–85.

    Article  Google Scholar 

  58. Resende MP, Jakoby I. Phosphate solubilization and phytohormone production by endophytic and rhizosphere Trichoderma isolates of guanandi (Calophyllum Brasiliense Cambess). Afr J Microbiol Res. 2014;8:2616–23.

    Article  CAS  Google Scholar 

  59. Kuklinsky-Sobral J, Araújo WL, Mendes R, et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6:1244–51.

    Article  CAS  PubMed  Google Scholar 

  60. Marlida Y, Delfita R, Adnadi P, et al. Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr. 2010;9:471–4.

    Article  CAS  Google Scholar 

  61. de Lacerda JRM, da Silva TF, Vollú RE, Marques JM, Seldin L. Generally recognized as safe (GRAS) Lactococcus lactis strains associated with Lippia sidoides Cham. are able to solubilize/mineralize phosphate. Springerplus. 2016;5:828.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lopez BR, Bashan Y, Bacilio M. Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Arch Microbiol. 2011;193:527–41.

    Article  CAS  PubMed  Google Scholar 

  63. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, et al. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solarium lycopersicum. Electron J Biotechnol. 2016;19:58–64.

    Article  CAS  Google Scholar 

  64. Ji SH, Gururani MA, Chun S-C. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res. 2014;169:83–98.

    Article  CAS  PubMed  Google Scholar 

  65. Puente ME, Bashan Y, Li CY, Lebsky VK. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol. 2004;6:629–42.

    Article  CAS  PubMed  Google Scholar 

  66. López-López A, Rogel MA, Ormeño-Orrillo E, et al. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol. 2010;33:322–7.

    Article  PubMed  Google Scholar 

  67. Dinić Z, Ugrinović M, Bosnić P, et al. Solubilization of inorganic phosphate by endophytic Pseudomonas sp. from French bean nodules. Ratarstvo i povrtarstvo. 2014;51:100–5.

    Article  Google Scholar 

  68. Jasim B, Jimtha JC, Jyothis M, Radhakrishnan EK. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul. 2013;71:1–11.

    Article  CAS  Google Scholar 

  69. Khan Z, Kandel S, Ramos D, et al. Increased biomass of nursery-grown Douglas-fir seedlings upon inoculation with diazotrophic endophytic consortia. For Trees Livelihoods. 2015;6:3582–93.

    Google Scholar 

  70. Crespo JM, Boiardi JL, Luna MF. Mineral phosphate solubilization activity of gluconacetobacter diazotrophicus under P-limitation and plant root environment. Agric Sci. 2011;02:16–22.

    CAS  Google Scholar 

  71. Hakim SS, Budi SW, Turjaman M. Phosphate solubilizing and antifungal activity of root endophyte isolated from Shorea leprosula Miq. and Shoreal selanica (DC) Blume. J Manajemen Hutan Tropika. 2015;21:138–46.

    Article  Google Scholar 

  72. Intorne AC, de Oliveira MVV, Lima ML, da Silva JF, Olivares FL, de Souza Filho GA. Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Arch Microbiol. 2009;191:477–83.

    Article  CAS  PubMed  Google Scholar 

  73. Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O'Connell RJ, Schulze-Lefert P. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell. 2016;165:464–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK. Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav. 2011;6:723–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li H-Y, Wei D-Q, Shen M, Zhou Z-P. Endophytes and their role in phytoremediation. Fungal Divers. 2012;54:11–8.

    Article  Google Scholar 

  76. Li X, Ren A, Han R, Yin L, Wei M, Gao Y. Endophyte-mediated effects on the growth and physiology of Achnatherum sibiricum are conditional on both N and P availability. PLoS One. 2012;7:e48010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jumpponen A, Mattson KG, Trappe JM. Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza. 1998;7:261–5.

    Article  CAS  PubMed  Google Scholar 

  78. Newsham KK. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol. 1999;144:517–24.

    Article  Google Scholar 

  79. Barrow JR, Osuna P. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ. 2002;51:449–59.

    Article  Google Scholar 

  80. Malinowski DP, Brauer DK, Belesky DP. The endophyte neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci. 1999;183:53–60.

    Article  CAS  Google Scholar 

  81. Haselwandter K, Read DJ. The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia. 1982;53:352–4.

    Article  CAS  PubMed  Google Scholar 

  82. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, Dobereiner J, Ley JD. Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Evol Microbiol. 1989;39:361–4.

    Google Scholar 

  83. Radzki W, Gutierrez Manero FJ, Algar E, Lucas Garcıa JA, Garcıa-Villaraco A, Ramos Solano B. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek. 2013;104:321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koulman A, Lee TV, Fraser K, Johnson L, Arcus V, Lott JS, Rasmussen S, Lane G. Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne. Phytochemistry. 2012;75:128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S. An extracellular siderophore is required to maintain the mutualistic interaction of Epichloe festucae with Lolium perenne. PLoS Pathog. 2013;9:e1003332. doi:10.1371/journal.ppat.1003332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosconi F, Trovero MF, de Souza EM, Fabiano E. Serobactins mediated iron acquisition systems optimize competitive fitness of Herbaspirillum seropedicae inside rice plants. Environ Microbiol. 2016;18(8):2523–33.

    Article  CAS  PubMed  Google Scholar 

  87. Maldonado-González MM, Elisabetta Schilirò E, Prieto P, Mercado-Blanco J. Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility. Environ Microbiol. 2015;17:3139–53.

    Article  PubMed  CAS  Google Scholar 

  88. Verma VC, Singh SK, Prakash S. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss J Basic Microbiol. 2011;51:550–6.

    Article  CAS  PubMed  Google Scholar 

  89. Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek. 2012;102:463–72.

    Article  CAS  PubMed  Google Scholar 

  90. Morrissey J, Guerinot ML. Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev. 2009;109:4553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jilani G, Akram A, Ali RM, Hafeez FY, Shamsi IH, Chaudhry AN, et al. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann Microbiol. 2007;57:177–84.

    Article  CAS  Google Scholar 

  92. Jin CW, Ye YQ, Zheng SJ. An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot. 2013;113:7–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA. Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). Proc World Acad Sci Eng Technol. 2009;37:90–2.

    Google Scholar 

  94. Kageyama SA, Mandyam KG, Jumpponen A. Diversity, function and potential applications of the root-associated endophytes. In: Varma PDA, editor. Mycorrhiza. Springer: Berlin, Heidelberg; 2008. p. 29–57.

    Chapter  Google Scholar 

  95. Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, et al. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A. 2006;103:18450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh A, Sharma J, Rexer K-H, Varma A. Plant productivity determinants beyond minerals, water and light: Piriformospora indica—a revolutionary plant growth promoting fungus. Curr Sci. 2000;79:1548–54.

    Google Scholar 

  97. Singh LP, Gill SS, Tuteja N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav. 2011;6:175–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, et al. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav. 2012;7:103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Trivedi DK, Verma PK, Srivastava A, Gill SS, Tuteja N. Piriformospora indica: a friend in need is a friend in deed. Res Rev. 2016;5:16–9.

    Google Scholar 

  100. Varma A, Sree KS, Arora M, Bajaj R, Prasad R, Kharkwal AC. Functions of novel symbiotic fungus – Piriformospora indica. Proc Indian Natl Sci Acad. 2014;80:429.

    Article  Google Scholar 

  101. Achatz B, von Rüden S, Andrade D, Neumann E, Pons-Kühnemann J, Kogel K-H, et al. Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil. 2010;333:59–70.

    Article  CAS  Google Scholar 

  102. Shahollari B, Varma A, Oelmüller R. Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol. 2005;162:945–58.

    Article  CAS  PubMed  Google Scholar 

  103. Knapp DG, Pintye A, Kovács GM. The dark side is not fastidious – dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS One. 2012;7:e32570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mandyam KG, Jumpponen A. Mutualism–parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol. 2015;5:776.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kuldau G, Bacon C. Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control. 2008;46:57–71.

    Article  Google Scholar 

  106. Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe D. Effect of the tall fescue endophyte on plant response to environmental stress. Agron J. 1989;81:83.

    Article  Google Scholar 

  107. Malinowski DP, Belesky DP. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci. 2000;40:923–40.

    Article  CAS  Google Scholar 

  108. Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol. 2007;55:130–40.

    Article  PubMed  CAS  Google Scholar 

  109. Deng Z, Cao L. Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere. 2016;168:1100–6.

    Article  PubMed  CAS  Google Scholar 

  110. Ahemad M. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech. 2015;5:111.

    Article  PubMed  Google Scholar 

  111. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil. 2012;360:1–13.

    Article  CAS  Google Scholar 

  112. Tkacz A, Poole P. The role of the plant microbiota in productivity. J Exp Bot. 2015;66:2167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Adesemoye AO, Torbert HA, Kloepper JW. Plant growth-promoting rhizobacteria allow reduced rate application rates of chemical fertilizers. Microb Ecol. 2009;58:921–9.

    Article  CAS  PubMed  Google Scholar 

  114. Germaine KJ, Chhabra S, Song B, Brazil D, Dowling DN. Microbes and sustainable production of biofuel crops: a nitrogen perspective. Biofuels. 2010;1(6):877–88.

    Article  CAS  Google Scholar 

  115. Kandel SL, Firrincieli A, Joubert PM, Okubara PA, Leston N, McGeorge K, Mugnozza GS, Harfouche A, Kim S-H, Doty SL. An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Front Microbiol. 2017;8 doi:10.3389/fmicb.2017.00386.

  116. Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedback and mitigation options. Nat Rev Microbiol. 2010;8:779–90.

    Article  CAS  PubMed  Google Scholar 

  117. Vendan RT, Yu YJ, Lee SH, Rhee YH. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol. 2010;48: 559–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Dowling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chhabra, S., Dowling, D.N. (2017). Endophyte-Promoted Nutrient Acquisition: Phosphorus and Iron. In: Doty, S. (eds) Functional Importance of the Plant Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-65897-1_3

Download citation

Publish with us

Policies and ethics