Skip to main content

Diversity, Function and Potential Applications of the Root-Associated Endophytes

  • Chapter
Mycorrhiza

Both mycorrhizal fungi and systemic fungal endophytes in the Order Clavicipitales have been extensively studied. Compared to these groups, root-associated fungal endophytes have received very little attention, even though they seem common in many ecosystems. Based on published reports, comparisons between host colonization by the root endophytes and mycorrhizal fungi from various habitats suggest that endophytes are possibly as abundant as mycorrhizas (Mandyam and Jumpponen 2005). As more reports that document the abundance of root endophytes in different habitats become available, a better understanding of the ecology and functions of these endophytes seems not only logical but critical.

The term ‘endophyte’ is used to describe either bacterial or fungal intracellular symbionts of plants that do not cause any visible signs of tissue damage or adverse effects on the host (Petrini 1991; Wilson 1995; Stone et al. 2000; Schulz and Boyle 2005). Fungal root endophytes are a paraphyletic group primarily occurring in the Ascomycota, although some examples also exist for Basidiomycetous endophytes (see Verma et al. 1998; Barazani et al. 2005). In this group, we usually include all root-inhabiting fungi that are considered non-mycorrhizal based on the morphology of the colonized host roots and on fungal structures produced in colonized roots typically considered indicative of dark septate endophytes (DSE). We also include fungi that produce hyaline structures when colonizing hosts intracellularly (O’Dell et al. 1993; Barrow and Aaltonen 2001; Ohki et al. 2002; Narisawa et al. 2003), but do not form typical DSE structures. These hyaline fungi can routinely be isolated from the roots of many plant species. Well-studied systemic and foliar endophytes of grasses, such as Acremonium sp., Epichoë sp. and Neotyphodium sp., will be excluded from this discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1-13

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389-3402

    Article  CAS  PubMed  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza 6:457-464

    Article  Google Scholar 

  • Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234-243

    Article  PubMed  Google Scholar 

  • Barrow JR, Aaltonen RE (2001) Evaluation of the internal colonization of Atriplex canescens (Prush) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11:199-205

    Article  Google Scholar 

  • Barrow JR, Osuna P (2002) Phosphorous solubilization and uptake by dark septate fungi in four wing saltbush, Artiplex canescens (Prush) Nutt. J Arid Environ 51:449-451

    Article  Google Scholar 

  • Bernays EA (1993) Plant sterols and host-plant affiliations of herbivores. In: Bernays EA (ed) Insect-plant interactions, Vol IV. CRC, Boca Raton, pp 45-57

    Google Scholar 

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:4111-451

    Article  Google Scholar 

  • Benerjee MN, Yesmin L, Vessey JK (2006) Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. In: Rai M (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 137-182

    Google Scholar 

  • Bolwerk A, Lagopodi AL, Lugtenberg BJJ, Bloemberg GV (2005) Visulaization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 18:710-721

    Article  CAS  PubMed  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057-3068

    Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:255-297

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742-1744

    Article  CAS  PubMed  Google Scholar 

  • Cook GW (1992) Fertilizing for maximum yield, 3rd. edn. MacMillan, New York

    Google Scholar 

  • Deacon JW (1981) Ecological relationships with other fungi: competitors and hyperparasites. In: Asher MJC, Shipton PJ (eds) Biology and control of take all. Academic, London, pp 75-101

    Google Scholar 

  • Dewan MM, Sivasithamparan K (1989) Growth promotion of rotation crop species by a sterile fungus from wheat and the effect of soil temperature and moisture on its suppression of take all. Mycol Res 93:156-160

    Article  Google Scholar 

  • El Karkouri K, Selosse MA, Mousain D (2006) Molecular markers detecting an ectomycor- rhizal Suillus collinitus strain on Pinus halepensis roots suggest successful inoculation and persistence in Mediterranean nursery and plantation. FEMS Microbiol Ecol 55:146-158

    Article  CAS  PubMed  Google Scholar 

  • Eom A-H, Hartnett DC, Wilson GWT (2000) Host plant species effects on arbuscular mycorrhizal communities in tallgrass prairie. Oecologia 122:435-444

    Article  Google Scholar 

  • Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071-1078

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for higher fungi and basidio- mycetes: application to identification of mycorrhizae and rusts. Mol Ecol 2:113-118

    Article  CAS  PubMed  Google Scholar 

  • Gasoni L, de Gurfinkel BS (1997) The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth. Mycol Res 101:867-870

    Article  Google Scholar 

  • Gehring CA, Whitman TG (2002) Mycorrhizae-herbivore interactions: population and community consequences. In: van der Heijden M, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin, pp 295-320

    Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Golotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45-47

    Article  Google Scholar 

  • Griffith GW (1994) Phenoloxidases in Aspergillus nidulans: 50 years on. In: Martinelli SD, Kinghorn JR (eds) Progress in industrial microbiology, vol 29. Elsevier, Amsterdam, pp 763-788

    Google Scholar 

  • Hallmann J, Sikora RA (1994) Influence of Fusarium oxysporum, a mutualistic fungal endophyte, on Meloidogyne incognita infection of tomato. J Plant Dis Protect 101:475-481

    Google Scholar 

  • Hallmann J, Sikora RA (1996) Toxicity of fungal endophyte secondary metabolites to plant- parasitic nematodes and soil-borne plant-pathogenic fungi. Eur J Plant Pathol 102:155-162

    Article  CAS  Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Carex spe- cies of high-alpine plant communities. Oecologia 53:352-354

    Article  Google Scholar 

  • Hashimoto Y, Hyakumachi M (2001) Effects of isolates of ectomycorrhizal fungi and endophytic Mycelium radicis atrovirens that were dominant in soil from disturbed sites on growth of Betula platyphylla var. japonica seedlings. Ecol Res 15:183-191

    Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temper- ate deciduous woodland. J Ecol 90:371-384

    Article  Google Scholar 

  • Jackson RM, walker C, Luff S, McEvoy C (1995) Inoculation of Sitka spuce and Douglas fir with ectomycorrhizal fungi in the United Kingdom. Mycorrhiza 5:165-173

    Article  Google Scholar 

  • Jallow MFA, Dugassa-Gobena D, Vidal S (2004) Indirect interaction between an unspecialized endophytic fungus and a polyphagous moth. Basic Appl Ecol 5:183-191

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575-583

    Article  Google Scholar 

  • Jones CG, Last FT (1991) Ectomycorrhizae and trees: implications for aboveground herbivory. In: Barbosa B, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. New York, Wiley-Interscience, pp 65-103

    Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root colonizing fungi. New Phytol 140:295-310

    Article  Google Scholar 

  • Jumpponen A, Mattson KG, Trappe JM (1998) Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic mat- ter. Mycorrhiza 7:261-265

    Article  CAS  Google Scholar 

  • Kim S, Shin D, Lee T, Oh KB (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Prod 67:448-450

    Article  CAS  PubMed  Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557-581

    Article  CAS  Google Scholar 

  • Kumari R, Kishan H, Bhoon YK, Varma A (2003) Colonization of cruciferous plants by Piriforma indica. Curr Sci 85:1672-1674

    Google Scholar 

  • Kurtboke DI, Shanker M, Rowland CY, Sivasithamparam K (1993) Responses of a sterile red fungus to soil types, wheat varities and presence of certain isolates of Streptomyces. Plant Soil 157:35-40

    Google Scholar 

  • Kuo MJ, Alexander M (1967) Inhibition of the lysis of fungi by melanins. J Bacteriol 94:624-629

    CAS  PubMed  Google Scholar 

  • Larson KC, Whitham TG (1997) Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia 109:575-582

    Article  Google Scholar 

  • le Tacon F, Alvarex IF, Bouchard D, Henrion B, Jackson RM, Luff S, J.I. P, Pera J, Stenström E, Villeneuve N, Walker C (1992) Variations in field response of forest trees of nursery ectomycorrhizal inoculation in Europe. In: Read DJ, Lewis DH, Fitter A, Alexander IJ (eds) Mycorrhizas in ecosystems. CABI, Wallingford, pp 119-134

    Google Scholar 

  • Lockwood JL (1992) Exploitation competition. In: Carroll GC, Wicklow DT (eds) The fungal community - its organization and role in the ecosystem. Dekker, New York, pp 243-263

    Google Scholar 

  • Maia LC, Silveira NSS, Cavalcante UMC (2006) Interaction between arbuscular mycorrhizal fungi and root pathogens. In: Rai M (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 325-352

    Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive functions of the root-colonizing dark sep- tate endophytic fungi. Stud Mycol 53:173-18

    Article  Google Scholar 

  • Mandeel Q, Baker R (1991) Mechanisms involved in biocontrol of cucumber with strains of non- pathogenic Fusarium oxysporum. Phytopathology 81:462-69

    Article  Google Scholar 

  • McGahren WJ, van den Hende JH, Mitscher LA (1969) Chlorinated cyclopentenone fungitoxic metabolites from the fungus, Sporormia affinis. J Am Chem Soc 91:157-162

    Article  CAS  PubMed  Google Scholar 

  • Menge JA (1983) Utilization of vesicular arbuscular mycorrhizal fungi in agriculture. New Phytol 81:553-559

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tis- sue cultures. Physiol Plant 15:473-497

    Article  CAS  Google Scholar 

  • Narisawa K, Usuki F, Hashiba T (2004) Control of verticillium yellows in chinese cabbage by the dark septate endophytic fungus LtVB3. Phytopathology 94:412-418

    Article  CAS  PubMed  Google Scholar 

  • Narisawa K, Chen M, Hashiba T, Tsuneda A (2003) Ultrastructural study on interaction between a sterile, white endophytic fungus and eggplant roots. J Gen Plant Pathol 69:292-296

    Article  Google Scholar 

  • Narisawa K, Kawamata H, Currah RS, Hashiba T (2002) Suppression of Verticillium wilt in egg- plant by some fungal root endophytes. Eur J Plant Pathol 108:103-109

    Article  Google Scholar 

  • Narisawa K, Tokumasu S, Hashiba T (1998) Suppression of club root formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 47:206-210

    Article  Google Scholar 

  • Newsham KK (1999) Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol 144:517-524

    Article  Google Scholar 

  • O’Dell TE, Massicotte HB, Trappe Jm (1993) Root colonization of Lupinus latifolius Agardh., and Pinus contorta Dougl. by Phialocephala fortinii Wang and Wilcox. New Phytol 124:93-100

    Article  Google Scholar 

  • Ohki T, Masuya, H, Yonezawa M, Usuki F, Narisawa K, Hashiba T (2002) Colonization process of the root endophytic fungus Heteroconium chaetospira in roots of Chinese cabbage. Mycoscience 43:191-194

    Article  Google Scholar 

  • Park J-H, Choi GJ, Jang KS, Lim HK, Kim HT, Cho KY, Kim J-C (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252:309-313

    Article  CAS  PubMed  Google Scholar 

  • Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorhizospheres and reforestation: current knowledge and research needs. Can J For Res 17:929-940

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbial ecol- ogy of leaves. Springer, New York, pp, 179-191

    Google Scholar 

  • Prakash A, Adholeya A (2006) Potential of arbuscular mycorrhizae in organic farming systems. In: Rai M (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 223-240

    Google Scholar 

  • Rai M, Acharya D, Singh A, et al. (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123-128

    Article  Google Scholar 

  • Rai MK, Varma A, Pandey AK (2002) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479-481

    Article  Google Scholar 

  • Rai M, Varma A (2005) Arbuscular mycorrhiz like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. J Biotechnol 52:643-650

    Google Scholar 

  • Raps A, Vidal S (1998) Indirect effects of an unspecialized endophytic fungus on specialized plant-herbivorous insect interactions. Oecologia 114:541-547

    Article  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agri- culture? Plant Soil 244:263-271

    Article  CAS  Google Scholar 

  • Römmert AK, Oros-Sichler M, Aust H-J, Lange T, Schulz B (2002) Growth promoting effects of endophytic colonization of the roots of larch (Larix decidua) with Cryptosporiopsis sp. and Phialophora sp. 7th International Mycological Congress, Oslo, Norway, p 309

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661-686

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of biologically active secondary metabolites. Mycol Res 106:996-1004

    Article  CAS  Google Scholar 

  • Schardl CL (2001) Epichloe festucae and related mutualistic symbionts of grasses. Fungal Gen Biol 33:69-82

    Article  CAS  Google Scholar 

  • Shende S, Bhagwat K, Wadegaonkar P, Rai M, Varma A (2006) Piriformospora indica as a new and emerging mycofertilizer and biotizer: potentials and prospects in sustainable agriculture. In: Rai M (ed) Handbook of microbial biofertilizers. Food Products Press, New York, pp 477-496

    Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeo- domain transcription factor that binds to a conserved motif in their promoters. J Bot Chem 280:26241-26247

    Article  CAS  Google Scholar 

  • Shin DS, Oh MN, Yang HC, Oh KB (2005) Biological characterization of periconicins, bioactive secondary metabolites, produced by Periconia sp OBW-115. J Microbiol Biotechnol 15:216-220

    CAS  Google Scholar 

  • Singh A, Sharma J, Rexer KH, Varma A (2000) Plant productivity determinants beyond minerals, water and light: Piriformospora indica - A revolutionary plant growth promoting fungus. Curr Sci 79:1548-1554

    Google Scholar 

  • Sivasithamparam K (1998) Root cortex - the final frontier for the biocontrol of root-rot with fun- gal antagonists: a case study on a sterile red fungus. Annu Rev Phytopathol 36:439-452

    Article  CAS  PubMed  Google Scholar 

  • Speakman JB, Lewis BG (1978) Limitation of Gaeumannomyces graminis by wheat root responses to Phialophora radicicola. New Phytol 80:373-380

    Article  Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophtic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony. (*and Other Methods). Version 4. Sinauer, Sunderland, Mass.

    Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IA (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082-2091

    Article  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390-397

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Verma S, Sudha, Sahay N, Butehorn B, Franken P (1999) Piriformospora indica, a cul- tivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741-2744

    CAS  PubMed  Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Butehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896-903

    Article  CAS  Google Scholar 

  • Vohnik M, Lukancic S, Bahor E, Regvar M, Vosátka M, Vodnik D (2003) Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different sub-strates. Folia Geobot 38:191-200

    Article  Google Scholar 

  • Vohnik M, Albrechtova J, Vosatka M (2005) The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorous and nitrogen uptake, foliar C:N ratio and root bio- mass distribution in Rhododendron cv. Azurro. Symbiosis 40:87-96

    CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386-13391

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribos- omal RNA genes for phylogenetics. In: Innis MA, Gelfand DA, Sninksky JJ, White TJ (eds) PCR Protocols: a Guide to Methods and Applications. Academic Press, New York

    Google Scholar 

  • Wilson D (1995) Endophyte-the evolution of a term, and clarification of its use and definition. Oikos 73:274-276

    Article  Google Scholar 

  • Wood T, Cummings B (1992) Biotechnology and the future of VAM commercialization. In: Allen MF (ed) Mycorrhizal Functioning. Chapman and Hall, London, pp 468-487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jumpponen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kageyama, S.A., Mandyam, K.G., Jumpponen, A. (2008). Diversity, Function and Potential Applications of the Root-Associated Endophytes. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_2

Download citation

Publish with us

Policies and ethics