Skip to main content

Micro-Macro Modelling of Metallic Composites

  • Chapter
  • First Online:
Multiscale Modeling of Heterogeneous Structures

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 86))

Abstract

This contribution describes a scale bridging approach for modelling pressure independent elastoplastic unidirectional metallic composite materials by making use of an anisotropic elastoplastic constitutive model. The material under investigation is tungsten fiber reinforced copper (W/Cu) composite. To identify the yield surface of the composite, a finite element model of a repeating unit cell (RUC) is set-up (micro-model). Through virtual experiments, the yield surface of the composite is identified. An anisotropic elastoplastic constitutive model based on the identified yield surface, which makes use of the concept of structural tensors, is developed. This material model serves as the material model for macro computations. To ensure a good agreement between constitutive model and RUC during plastic evolution, multiple hardening functions are employed. The parameters of the constitutive model are identified and the constitutive model is validated against the response of the RUC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Doychak, J.: Metal- and intermettallic-matrix composites for aerospace propulsion and power systems. J. Min. Met. Mat. S. 44, 46–51 (1992)

    Article  Google Scholar 

  2. Sanfeliz, J.G.: Elastic-plastic finite element analyses of a unidirectional, 9 vol % tungsten fiber reinforced copper matrix composite. Nasa Technical Memorandum 106304. NASA (1993)

    Google Scholar 

  3. Miehe, C., Schotte, J., Schröder, J.: Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16, 372–382 (1999)

    Article  Google Scholar 

  4. Kanouté, P., Boso, B.P., Chaboche, J.L., Schrefler, B.A.: Multiscale methods for composites: a review. Arch. Comput. Meth. Eng. 16, 31–37 (2009)

    Article  MATH  Google Scholar 

  5. Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math 234, 2175–2182 (2010)

    Article  MATH  Google Scholar 

  6. Reese, S.: Meso-macro modelling of fiber-reinforced rubber-like composites exhibiting large elastoplastic deformation. Int. J. Solids Struct. 40, 951–980 (2003)

    Article  MATH  Google Scholar 

  7. Stier, B., Simon, J.W., Reese, S.: Finite element analysis of layered fiber composite structures accounting for the materials microstructure and delamination. Appl. Compos. Mater. 21, 1–17 (2014)

    Article  Google Scholar 

  8. Simon, J.W., Höwer, D., Stier, B., Reese, S.: Meso-mechanically motivated modeling of layered fiber reinforced composites accounting for delamination. Compos. Struct. 122, 477–487 (2015)

    Article  Google Scholar 

  9. Gaser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. 29, 340–360 (2002)

    Article  MATH  Google Scholar 

  10. Vladimirov, I.N., Pietryga, M.P., Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming. Int. J. Plast. 26, 659–687 (2010)

    Article  MATH  Google Scholar 

  11. Vogler, V., Rolfes, R., Camanho, P.P.: Modelling the inelastic deformation and fracture of polymer composites—part I: plasticity model. Adv. Appl. Mech. 59, 50–64 (2013)

    Google Scholar 

  12. Svendsen, B., Levkovitch, V., Wang, J., Reusch, F., Reese, S.: Application of the concept of evolving structural tensors to the modelling of initial and induced anisotropy at large deformation. Comput. Struct. 84, 1077–1085 (2006)

    Article  Google Scholar 

  13. Noman, M., Clausmeyer, T., Barthel, C., Svendsen, B., Huétink, J., van Riel, M.: Experimental characterization and modeling of the hardening behavior of the sheet steel LH800. Mater. Sci. Eng. A 527, 2515–2526 (2010)

    Article  Google Scholar 

  14. Pietryga, M.P., Vladimirov, I.N., Reese, S.: A finite deformation model for evolving flow anisotropy with distorsional hardening including experimental validation. Mech. Mater. 44, 163–173 (2012)

    Article  Google Scholar 

  15. Abaqus finite element software: Dessault systémes. Providence, RI (2015)

    Google Scholar 

  16. Barbero, E.J.: Finite Element Analysis of Composite Materials using Abaqus. CRC Press (2008)

    Google Scholar 

  17. Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  MATH  Google Scholar 

  18. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. London, Ser. A 193, 95–102 (1948)

    Article  MathSciNet  Google Scholar 

  19. Spencer, A.J.M.: Theory of invariants. In: Continuum Physics. Academic Press, New York (1971)

    Google Scholar 

  20. Boehler, J.P.: A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. Z. Angew. Math. Mech. 59, 157–167 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, J.M., Rychlewski, J.: Structural tensors for anisotropic solids. Arch. Mech. 42, 267–277 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Vladimirov, I.N., Pietryga, M.P., Reese, S.: On the influence of kinematic hardening on plastic anisotropy in the context of finite strain plasticity. Int. J. Mater. Form. 4, 255–267 (2011)

    Article  Google Scholar 

  23. Reese, S., Raible, T., Wriggers, P.: Finite element modelling of orthotropic material behaviour in pneumatic membranes. Int. J. Solids Struct. 38, 9525–9544 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Deutsche Forschungsgemeinschaft through Grant GSC 111. The last author is grateful for the financial support provided by the Ministry of Innovation, Science and Research of the State of North Rhine-Westphalia. The authors would also like to acknowledge Dipl.-Ing. Bertram Stier for providing the finite element model of the unidirectional composite repeating unit cell (RUC) used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex Bedzra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bedzra, R., Reese, S., Simon, JW. (2018). Micro-Macro Modelling of Metallic Composites. In: Sorić, J., Wriggers, P., Allix, O. (eds) Multiscale Modeling of Heterogeneous Structures. Lecture Notes in Applied and Computational Mechanics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-65463-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65463-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65462-1

  • Online ISBN: 978-3-319-65463-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics