Skip to main content

Pathogenesis

  • Chapter
  • First Online:
Essentials of Hypertension
  • 1210 Accesses

Abstract

Dozens of thousands investigations reported potential causes for the abnormal rise of blood pressure (BP) with age. Among them, a pool of seminal studies, linked by coherence and consistence, identified that the maladaptation of the kidney to the unnatural abusive consumption of sodium salts is the leading cause of increase of BP. This dietary deviation should be fought to eradicate hypertension and its deleterious consequences over the heart, vessels, and other systems. This chapter analyzes the evidences that support this interpretation and presents other dietary and behavioral determinants of rising of BP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lowenstein FW. Blood pressure in relation to age and sex in the tropics and subtropics. Lancet. 1961;1:389–92.

    Article  Google Scholar 

  2. Oliver WJ, Cohen EL, Neel JV. Blood pressure. Sodium intake and sodium related hormones in the Yanomano Indians, a no-salt culture. Circulation. 1975;52:146–61.

    Article  CAS  PubMed  Google Scholar 

  3. Dahl LK. Possible role of salt intake on development of essential hypertension. In: Cottier P, Bock KD, editors. Essential Hypertension, an International Symposium. New York: Springer; 1960. p. 53.

    Chapter  Google Scholar 

  4. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Br Med J. 1988;297:319–28.

    Article  Google Scholar 

  5. Whelton PK, Appel LJ, Sacco RL, Anderson CA, Antman EM, Campbell N, et al. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation. 2012;126(24):2880–9.

    Article  CAS  PubMed  Google Scholar 

  6. Strom BL, Anderson CA, Ix JH. Sodium reduction in populations: insights from the Institute of Medicine committee. JAMA. 2013;310:31–2.

    Article  CAS  PubMed  Google Scholar 

  7. Cobb LK, Anderson CA, Elliott P, Hu FB, Liu K, Neaton JD, et al. Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the American Heart Association. Circulation. 2014;129:1173–86.

    Article  CAS  PubMed  Google Scholar 

  8. Cogswell ME, Mugavero K, Bowman BA, Frieden TR. Dietary sodium and cardiovascular disease risk — measurement matters. N Engl J Med. 2016;375:580–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Campbell N, L’Abbe MR, McHenry EW. Too much focus on low-quality science? CMAJ. 2015;187(2):131–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhu K, Psaty BM. Sodium and blood pressure: the puzzling results of intrapopulation epidemiologic studies. Med Hypotheses. 1992;38:120–4.

    Article  CAS  PubMed  Google Scholar 

  11. Fuchs FD, Wannmacher CM, Wannmacher L, Guimaraes FS, Rosito GA, Gastaldo G, et al. Effect of sodium intake on blood pressure, serum levels and renal excretion of sodium and potassium in normotensives with and without familial predisposition to hypertension. Braz J Med Biol Res. 1987;20:25–34.

    CAS  PubMed  Google Scholar 

  12. Tobian L. Salt and hypertension. In: Genest J, Koiw E, Kuchel O, editors. Hypertension. New York: McGraw-Hill; 1977. p. 566–75.

    Google Scholar 

  13. Tobian L. Evidence for Na-retaining humoral agents and vasoconstrictor humoral agents in hypertension-prone Dahl ‘S’ rats. Prevention of NaCl-induced hypertension in Dahl ‘S’ rats with thiazide. Horm Res. 1979;11(6):277–91.

    Article  CAS  PubMed  Google Scholar 

  14. Moraes RS, Fuchs FD, Dalla Costa F, Moreira LB. Familial predisposition to hypertension and the association between urinary sodium excretion and blood pressure in a population-based sample of young adults. Braz J Med Biol Res. 2000;33:799–803.

    Article  CAS  PubMed  Google Scholar 

  15. Dahl LK, Heine M, Tassinari L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature. 1962;194:480–2.

    Article  CAS  PubMed  Google Scholar 

  16. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–93.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson TW, Grim CE. Biohistory of slavery and blood pressure differences in blacks today: a hypothesis. Hypertension. 1991;17:I122–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fuchs FD. Why do black Americans have higher prevalence of hypertension? An enigma still unsolved. Hypertension. 2011;57:379–80.

    Article  CAS  PubMed  Google Scholar 

  19. Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, et al. American Heart Association Professional and Public Education Committee of the Council on Hypertension; Council on Functional Genomics and Translational Biology; and Stroke Council. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension. 2016;68:e7–e46.

    Article  CAS  PubMed  Google Scholar 

  20. Iatrino R, Manunta P, Zagato L. Salt sensitivity: challenging and controversial phenotype of primary hypertension. Curr Hypertens Rep. 2016;18:70.

    Article  PubMed  Google Scholar 

  21. Guyton AC, Coleman TG, Cowley AV Jr, Scheel KW, Manning RD Jr, Norman RA Jr. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52:584–94.

    Article  CAS  PubMed  Google Scholar 

  22. Guyton AC. Personal views on mechanisms of hypertension. In: Genest J, Koiw E, Kuchel O, editors. Hypertension. New York: McGraw-Hill; 1977. p. 566–75.

    Google Scholar 

  23. Guyton AC. Kidneys and fluids in pressure regulation: small volume but large pressure changes. Hypertension. 1992;19(1 suppl):12–8.

    Google Scholar 

  24. Coleman TG, Guyton AC. Hypertension caused by salt loading in the dog. 3. Onset transients of cardiac output and other circulatory variables. Circ Res. 1969;25:153–60.

    Article  CAS  PubMed  Google Scholar 

  25. Lund-Johansen P. Hemodynamic trends in untreated essential hypertension: preliminary report on a 10 year follow-up study. Acta Med Scand. 1977;602:68–76.

    Google Scholar 

  26. Folkow B, Hallbäck M, Lundgren Y, Sivertsson R, Weiss L. Importance of adaptive changes in vascular design for establishment of primary hypertension, studied in man and in spontaneously hypertensive rats. Circ Res. 1973;32:2–16.

    Google Scholar 

  27. Humphrey JD. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension. 2008;52:195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dahl LK, Heine M. Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res. 1975;36:692–6.

    Article  CAS  PubMed  Google Scholar 

  29. Bianchi G, Fox U, Difrancesco GF, et al. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med. 1974;47:435–48.

    CAS  PubMed  Google Scholar 

  30. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348:101–8.

    Article  PubMed  Google Scholar 

  31. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. Cochrane Database Syst Rev. 2013 Apr 30;4:CD004937.

    Google Scholar 

  32. Hofman A, Hazebroek A, Valkenburg HA. A randomized trial of sodium intake and blood pressure in newborn infants. JAMA. 1983;250:370–3.

    Article  CAS  PubMed  Google Scholar 

  33. Geleijnse JM, Hofman A, Witteman JC, Hazebroek AA, Valkenburg HA, Grobbee DE. Long-term effects of neonatal sodium restriction on blood pressure. Hypertension. 1997;29:913–7.

    Article  CAS  PubMed  Google Scholar 

  34. He FJ, MacGregor GA. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet. 2011;378(9789):380–2.

    Article  PubMed  Google Scholar 

  35. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.

    Article  Google Scholar 

  36. Poorolajal J, Hooshmand E, Bahrami M, Ameri P. How much excess weight loss can reduce the risk of hypertension? J Public Health (Oxf). 2017;39(3):e95–e102.

    Google Scholar 

  37. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (BMI Mediated Effects), Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014;383:970–83.

    Article  Google Scholar 

  38. Fuchs FD, Gus M, Moreira LB, Moraes RS, Wiehe M, Pereira GM, Fuchs SC. Anthropometric indices and the incidence of hypertension: a comparative analysis. Obes Res. 2005;13:1515–7.

    Article  PubMed  Google Scholar 

  39. Gus M, Fuchs SC, Moreira LB, Moraes RS, Wiehe M, Silva AF, Albers F, Fuchs FD. Association between different measurements of obesity and the incidence of hypertension. Am J Hypertens. 2004;17:50–3.

    Article  PubMed  Google Scholar 

  40. Silva RC, Silva DA, Bastos JL, Peres KG, Peres M, González-Chica DA. Anthropometric measures change and incidence of high blood pressure levels among adults: a population based prospective study in Southern Brazil. J Hypertens. 2017;35(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  41. Chandra A, Neeland IJ, Berry JD, Ayers CR, Rohatgi A, Das SR, et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J Am Coll Cardiol. 2014;64:997–1002.

    Article  PubMed  Google Scholar 

  42. Tanamas SK, Wong E, Backholer K, Abdullah A, Wolfe R, Barendregt J, et al. Duration of obesity and incident hypertension in adults from the Framingham Heart Study. J Hypertens. 2015;33(3):542–5.

    Article  CAS  PubMed  Google Scholar 

  43. John E, Hall JE, Carmo JM, Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006.

    Article  Google Scholar 

  44. Kotsis V, Nilsson P, Grassi G, Mancia G, Redon J, Luft F, Schmieder R, et al. WG on Obesity, Diabetes, the High Risk Patient, European Society of Hypertension. New developments in the pathogenesis of obesity-induced hypertension. J Hypertens. 2015;33:1499–508.

    Article  CAS  PubMed  Google Scholar 

  45. Emdin CA, Anderson SG, Woodward M, Rahimi K. Usual blood pressure and risk of new-onset diabetes: evidence from 4.1 million adults and a meta-analysis of prospective studies. J Am Coll Cardiol. 2015;66:1552–62.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gale EA. The myth of the metabolic syndrome. Diabetologia. 2005;48:1679–83.

    Article  PubMed  Google Scholar 

  47. Adrogué HJ, Madias NE. Sodium surfeit and potassium deficit: keys to the pathogenesis of hypertension. J Am Soc Hypertens. 2014;8:203–13.

    Article  PubMed  Google Scholar 

  48. Zhou X, Forrest MJ, Sharif-Rodriguez W, Forrest G, Szeto D, Urosevic-Price O, et al. Chronic inhibition of renal outer medullary potassium channel not only prevented but also reversed development of hypertension and end-organ damage in Dahl salt-sensitive rats. Hypertension. 2017;69:332.

    Article  CAS  PubMed  Google Scholar 

  49. Günther AL, Liese AD, Bell RA, Dabelea D, Lawrence JM, et al. Association between the dietary approaches to hypertension diet and hypertension in youth with diabetes mellitus. Hypertension. 2009;53:6–12.

    Article  PubMed  Google Scholar 

  50. Folsom AR, Parker ED, Harnack LJ. Degree of concordance with DASH diet guidelines and incidence of hypertension and fatal cardiovascular disease. Am J Hypertens. 2007;20:225–32.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Klatsky AL, Friedman GD, Siegelaub AB, Gérard MJ. Alcohol consumption and blood pressure: Kaiser-Permanente multiphasic health examination data. N Engl J Med. 1977;296:1194–2000.

    Article  CAS  PubMed  Google Scholar 

  52. Fuchs FD, Chambless LE, Whelton PK, Nieto FJ, Heiss G. Alcohol consumption and the incidence of hypertension: the Atherosclerosis Risk in Communities study. Hypertension. 2001;37:1242–50.

    Article  CAS  PubMed  Google Scholar 

  53. Steffens AA, Moreira LB, Fuchs SC, Wiehe M, Gus M, Fuchs FD. Incidence of hypertension by alcohol consumption: is it modified by race? J Hypertens. 2006;24:1489–92.

    Article  CAS  PubMed  Google Scholar 

  54. Ikeda ML, Barcellos NT, Alencastro PR, Wolff FH, Brandão AB, Fuchs FD, et al. Association of blood pressure and hypertension with alcohol consumption in HIV-infected white and nonwhite patients. Scientific World Journal. 2013;2013:169825.

    PubMed  PubMed Central  Google Scholar 

  55. Bau PF, Bau CH, Rosito GA, Manfroi WC, Fuchs FD. Alcohol consumption, cardiovascular health, and endothelial function markers. Alcohol. 2007;41:479–88.

    Article  CAS  PubMed  Google Scholar 

  56. Rosito GA, Fuchs FD, Duncan BB. Dose-dependent biphasic effect of ethanol on 24-h blood pressure in normotensive subjects. Am J Hypertens. 1999;12:236–40.

    Article  CAS  PubMed  Google Scholar 

  57. Foppa M, Fuchs FD, Preissler L, Andrighetto A, Rosito GA, Duncan BB. Red wine with the noon meal lowers post-meal blood pressure: a randomized trial in centrally obese, hypertensive patients. J Stud Alcohol. 2002;63:247–51.

    Article  PubMed  Google Scholar 

  58. Abe H, Kawano Y, Kojima S, Ashida T, Kuramochi M, Matsuoka H, et al. Biphasic effects of repeated alcohol intake on 24-h blood pressure in hypertensive patients. Circulation. 1994;89:2626–33.

    Article  CAS  PubMed  Google Scholar 

  59. Zilkens RR, Burke V, Hodgson JM, Barden A, Beilin LJ, Puddey IB. Red wine and beer elevate blood pressure in normotensive men. Hypertension. 2005;45:874–9.

    Article  CAS  PubMed  Google Scholar 

  60. Mori TA, Burke V, Zilkens RR, Hodgson JM, Beilin LJ, Puddey IB. The effects of alcohol on ambulatory blood pressure and other cardiovascular risk factors in type 2 diabetes: a randomized intervention. J Hypertens. 2016;34:421–8.

    Article  CAS  PubMed  Google Scholar 

  61. Bau PF, Moraes RS, Bau CH, Ferlin EL, Rosito GA, Fuchs FD. Acute ingestion of alcohol and cardiac autonomic modulation in healthy volunteers. Alcohol. 2011;45:123–9.

    Article  CAS  PubMed  Google Scholar 

  62. Moreira LB, Fuchs FD, Moraes RS, Bredemeier M, Duncan BB. Alcohol intake and blood pressure: the importance of time elapsed since last drink. J Hypertens. 1998;16:175–80.

    Article  CAS  PubMed  Google Scholar 

  63. Fuchs FD, Chambless LE, Folsom AR, Eigenbrodt ML, Duncan BB, Gilbert A, et al. Association between alcoholic beverage consumption and incidence of coronary heart disease in whites and blacks: the Atherosclerosis Risk in Communities study. Am J Epidemiol. 2004;160:466–74.

    Article  PubMed  Google Scholar 

  64. Jackson CL, Hu FB, Kawachi I, Williams DR, Mukamal KJ, Rimm EB. Black–white differences in the relationship between alcohol drinking patterns and mortality among US men and women. Am J Public Health. 2015;105:S534–43.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Whitman IR, Agarwal V, Nah G, Dukes JW, Vittinghoff E, Dewland TA, et al. Alcohol abuse and cardiac disease. J Am Coll Cardiol. 2017;69:13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fuchs FD, Chambless LE. Is the cardioprotective effect of alcohol real? Alcohol. 2007;41:399–402.

    Article  CAS  PubMed  Google Scholar 

  67. Cano-Pumarega I, Durán-Cantolla J, Aizpuru F, Miranda-Serrano E, Rubio R, Martínez-Null C, et al. Obstructive sleep apnea and systemic hypertension: longitudinal study in the general population: the Vitoria Sleep Cohort. Am J Respir Crit Care Med. 2011;184:1299–304.

    Article  PubMed  Google Scholar 

  68. Gonçalves SC, Martinez D, Gus M, de Abreu-Silva EO, Bertoluci C, Dutra I, et al. Obstructive sleep apnea and resistant hypertension: a case–control study. Chest. 2007;132:1858–62.

    Article  PubMed  Google Scholar 

  69. Tonelli de Oliveira AC, Martinez D, Vasconcelos LF, Gonçalves SC, Lenz MC, Fuchs SC, et al. Diagnosis of obstructive sleep apnea syndrome and its outcomes with home portable monitoring. Chest. 2009;135:330–6.

    Article  Google Scholar 

  70. Gus M, Gonçalves SC, Martinez D, de Abreu Silva EO, Moreira LB, Fuchs SC, et al. Risk for obstructive sleep apnea by Berlin Questionnaire, but not daytime sleepiness, is associated with resistant hypertension: a case-control study. Am J Hypertens. 2008;21:832–5.

    Article  PubMed  Google Scholar 

  71. Massierer D, Martinez D, Fuchs SC, Pellin PP, Garcia MS, Zacharias AL, et al. Obstructive sleep apnea, detected by the Berlin Questionnaire: an associated risk factor for coronary artery disease. Cad Saude Publica. 2012;28:1530–8.

    Article  PubMed  Google Scholar 

  72. Steinhorst AP, Gonçalves SC, Oliveira AT, Massierer D, Gus M, Fuchs SC, et al. Influence of sleep apnea severity on blood pressure variability of patients with hypertension. Sleep Breath. 2014;18:397–401.

    Article  PubMed  Google Scholar 

  73. Fuchs FD, Martinez D. Obstructive sleep apnea should be deemed a cardiovascular disease. Heart. 2015;101:1261–2.

    Article  PubMed  Google Scholar 

  74. Sparrenberger F, Cichelero FT, Ascoli AM, Fonseca FP, Weiss G, Berwanger O, et al. Does psychosocial stress cause hypertension? A systematic review of observational studies. J Hum Hypertens. 2009;23:12–9.

    Article  CAS  PubMed  Google Scholar 

  75. Sparrenberger F, Fuchs SC, Moreira LB, Fuchs FD. Stressful life events and current psychological distress are associated with self-reported hypertension but not with true hypertension: results from a cross-sectional population-based study. BMC Public Health. 2008;8:357.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wiernik E, Pannier B, Czernichow S, Nabi H, Hanon O, Simon T, et al. Occupational status moderates the association between current perceived stress and high blood pressure: evidence from the IPC cohort study. Hypertension. 2013;61:571–7.

    Article  CAS  PubMed  Google Scholar 

  77. Wiernik E, Nabi H, Pannier B, Czernichow S, Hanon O, Simon T, et al. Perceived stress, sex and occupational status interact to increase the risk of future high blood pressure: the IPC cohort study. J Hypertens. 2014;32:1979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hassoun L, Herrmann-Lingen C, Hapke U, Neuhauser H, Scheidt-Nave C, Meyer T. Association between chronic stress and blood pressure: findings from the German Health Interview and Examination Survey for Adults 2008–2011. Psychosom Med. 2015;77:575–82.

    Article  PubMed  Google Scholar 

  79. Brummett BH, Babyak MA, Siegler IC, Shanahan M, Harris KM, Elder GH, et al. Systolic blood pressure, socioeconomic status, and behavioral risk factors in a nationally representative US young adult sample. Hypertension. 2011;58:161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fuchs FD, Moreira LB, Moraes RS, Bredemeier M, Cardozo SC. Prevalence of systemic arterial hypertension and associated risk factors in the Porto Alegre metropolitan area. Population-based study. Arq Bras Cardiol. 1994;63:473–9.

    CAS  PubMed  Google Scholar 

  81. Lima-Costa MF, Mambrini JV, Leite ML, Peixoto SV, Firmo JO, Loyola Filho AI, et al. Socioeconomic position, but not African genomic ancestry, is associated with blood pressure in the Bambui-Epigen (Brazil) cohort study of aging. Hypertension. 2016;67:349–55.

    CAS  PubMed  Google Scholar 

  82. Maatouk I, Herzog W, Böhlen F, Quinzler R, Löwe B, Saum KU, et al. Association of hypertension with depression and generalized anxiety symptoms in a large population-based sample of older adults. J Hypertens. 2016;34(9):1711–20.

    Article  CAS  PubMed  Google Scholar 

  83. Wiehe M, Fuchs SC, Moreira LB, Moraes RS, Pereira GM, Gus M, et al. Absence of association between depression and hypertension: results of a prospectively designed population-based study. J Hum Hypertens. 2006;20:434–9.

    Article  CAS  PubMed  Google Scholar 

  84. Meng L, Chen D, Yang Y, Zheng Y, Hui R. Depression increases the risk of hypertension incidence: a meta-analysis of prospective cohort studies. J Hypertens. 2012;30:842–51.

    Article  CAS  PubMed  Google Scholar 

  85. Sandström YK, Ljunggren G, Wändell P, Wahlström L, Carlsson AC. Psychiatric comorbidities in patients with hypertension; a study of registered diagnoses 2009–2013 in the total population in Stockholm County, Sweden. J Hypertens. 2016;34:414–20.

    Article  PubMed  Google Scholar 

  86. Park H, Kim K. Associations between oral contraceptive use and risks of hypertension and prehypertension in a cross-sectional study of Korean women. BMC Womens Health. 2013;13:39.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lubianca JN, Faccin CS, Fuchs FD. Oral contraceptives: a risk factor for uncontrolled blood pressure among hypertensive women. Contraception. 2003;67:19–24.

    Article  CAS  PubMed  Google Scholar 

  88. Sfreddo C, Fuchs SC, Merlo AR, Fuchs FD. Shift work is not associated with high blood pressure or prevalence of hypertension. PLoS One. 2010;5:e15250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ceïde ME, Pandey A, Ravenell J, Donat M, Ogedegbe G, Jean-Louis G. Associations of short sleep and shift work status with hypertension among black and white Americans. Int J Hypertens. 2015;2015:697275.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gholami Fesharaki M, Kazemnejad A, Zayeri F, Rowzati M, Akbari H. Historical cohort study of shift work and blood pressure. Occup Med (Lond). 2014;64(2):109–12.

    Article  CAS  Google Scholar 

  91. Mordi I, Mordi N, Delles C, Tzemos N. Endothelial dysfunction in human essential hypertension. J Hypertens. 2016;34:1464–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuchs, F.D. (2018). Pathogenesis. In: Essentials of Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-63272-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63272-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63271-1

  • Online ISBN: 978-3-319-63272-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics