Skip to main content

Understanding Entrainment Processes in the Atmosphere: The Role of Numerical Simulation

  • Conference paper
  • First Online:
Direct and Large-Eddy Simulation X

Part of the book series: ERCOFTAC Series ((ERCO,volume 24))

Abstract

Turbulent entrainment is a process of primary importance in the atmospheric boundary layer; however despite several decades of intense study much remains to be understood. Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES) have a tremendous potential to improve the understanding of turbulent entrainment, particularly if combined with theory. We discuss a recently developed framework for turbulent jets and plumes to decompose turbulent entrainment in various physical processes, and modify it for use in a stably stratified shear driven (nocturnal) boundary layer. The decomposition shows that inner layer processes become negligible as time progresses and that the entrainment coefficient is determined by turbulence production in the outer layer only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abma, D., Heus, T., Mellado, J.P.: Direct numerical simulation of evaporative cooling at the lateral boundary of shallow cumulus clouds. J. Atmos. Sci. 70, 2088–2102 (2013)

    Article  Google Scholar 

  2. Ansorge, C., Mellado, J.P.: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound. Layer Meteorol. 153, 89–116 (2014)

    Article  Google Scholar 

  3. Da Silva, C., Westerweel, J., Hunt, J.C.R., Eames, I.: Interfacial layers between regions of different turbulence intensity. Ann. Rev. Fluid Mech. 46, 567–590 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Rooy, W.C., Bechtold, P., Frohlich, K., Hohenegger, C., Jonker, H.J.J., Mironov, D., Siebesma, A.P., Teixeira, J., Yano, J.I.: Entrainment and detrainment in cumulus convection: an overview. Q. J. R. Meteorol. Soc. 139(670), 1–19 (2013)

    Article  Google Scholar 

  5. Fernando, H.J.S.: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455–493 (1991)

    Article  Google Scholar 

  6. Fox, D.G.: Forced plume in a stratified fluid. J. Geophys. Res. 75(33), 6818–6835 (1970)

    Article  Google Scholar 

  7. Garcia, J.R., Mellado, J.P.: The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci. 71, 1935–1955 (2014)

    Article  Google Scholar 

  8. Jonker, H.J.J., van Reeuwijk, M., Sullivan, P.P., Patton, E.G.: Interfacial layers in clear and cloudy atmospheric boundary layers. In: Turbulence, Heat and Mass Transfer, 7 September 2012

    Google Scholar 

  9. Jonker, H.J.J., van Reeuwijk, M., Sullivan, P.P., Patton, E.G.: On the scaling of shear-driven entrainment: a dns study. J. Fluid Mech. 732, 150–165 (2013)

    Article  MATH  Google Scholar 

  10. Kato, H., Phillips, O.M.: On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech. 37(04), 643–655 (1969)

    Article  Google Scholar 

  11. Pollard, R.T., Rhines, P.B., Thompson, R.O.R.Y.: The deepening of the wind-mixed layer. Geophys. Fluid. Dyn. 3, 381–404 (1973)

    Google Scholar 

  12. Priestley, C.H.B., Ball, F.K.: Continuous convection from an isolated source of heat. Q. J. R. Meteorol. Soc. 81, 144–157 (1955)

    Article  Google Scholar 

  13. Stull, R.B.: An Introduction To Boundary Layer Meteorology. Kluwer Academic Publishers, 1998

    Google Scholar 

  14. Sullivan, P.P., Moeng, C.-H., Stevens, B., Lenschow, D.H., Major, S.D.: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci. 55, 3042–3064 (1998)

    Article  Google Scholar 

  15. van Reeuwijk, M., Craske, J.: Energy-consistent entrainment relation for jets and plumes. J. Fluid. Mech. 782, 333–355 (2015)

    Article  MathSciNet  Google Scholar 

  16. Van Reeuwijk, M., Holzner, M.: The turbulence boundary of a temporal jet. J. Fluid Mech 739, 254–275 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the UK Turbulence consortium (grant number EP/L000261/1), an ARCHER Leadership grant for simulation time on the UK national supercomputer and an NWO/NCF (Netherlands) grant for computations on Huygens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten van Reeuwijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

van Reeuwijk, M., Jonker, H.J.J. (2018). Understanding Entrainment Processes in the Atmosphere: The Role of Numerical Simulation. In: Grigoriadis, D., Geurts, B., Kuerten, H., Fröhlich, J., Armenio, V. (eds) Direct and Large-Eddy Simulation X. ERCOFTAC Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-63212-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63212-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63211-7

  • Online ISBN: 978-3-319-63212-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics