Skip to main content

Computer Aided Synthesis: A Game-Theoretic Approach

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10396))

Included in the following conference series:

Abstract

In this invited contribution, we propose a comprehensive introduction to game theory applied in computer aided synthesis. In this context, we give some classical results on two-player zero-sum games and then on multi-player non zero-sum games. The simple case of one-player games is strongly related to automata theory on infinite words. All along the article, we focus on general approaches to solve the studied problems, and we provide several illustrative examples as well as intuitions on the proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This condition guarantees that there is no deadlock. It can be assumed w.l.o.g. for all the problems considered in this article.

  2. 2.

    We also say that player i controls the vertices of \(V_i\).

  3. 3.

    that is, an irreflexive, transitive and total binary relation.

  4. 4.

    In all examples of this article, circle (resp. square) vertices are controlled by player 1 (resp. player 2).

  5. 5.

    This informal definition is enough for this survey. See for instance [38] for a definition.

  6. 6.

    As player 1 can only loop on vertices \(v_2\) and \(v_3\), we do not formally define \(\sigma _1\) on histories ending with \(v_2\) or \(v_3\).

  7. 7.

    This problem is focused on Player 1, the payoff function \(f_2\) and preference relation \(\prec _2\) of Player 2 do not matter.

  8. 8.

    Alternatively, \(\prec _i\) can be the ordering > meaning that player i prefers to minimize the payoff of a play.

  9. 9.

    A colored variant of Muller objective is defined from a coloring \(c~: V \rightarrow \mathbb N\) of the vertices: the family \(\mathcal F\) is composed of subsets of \(c(V)\) (instead of V) and \(\varOmega _i = \{\rho \in Plays\mid inf(c(\rho _0)c(\rho _1)\ldots ) \in \mathcal{F} \}\) [39]. See [42] for several variants of Muller games.

  10. 10.

    In Sect. 3.1, we omit index 1 everywhere since player 1 is the unique player of the game.

  11. 11.

    The hypotheses of this theorem are those given in the full version of [36] available at http://www.labri.fr/perso/gimbert/.

  12. 12.

    Theorem 20 is given in [36] for real-valued payoff functions \(f : Plays\rightarrow \mathbb R\) and the usual ordering <, but its proof is easily generalized to the statement given here.

  13. 13.

    It is PSPACE-complete for the colored variant of Muller objective [42, 52].

  14. 14.

    The reader who prefers to know classical solutions to Problem 7 for multi-player non zero-sum games can skip this section and go directly to Sect. 4.

  15. 15.

    This tuple of payoff functions is used by player 1 contrarily to Definition 2 where function \(f_i\) is used by player i for all \(i \in \varPi \).

  16. 16.

    We found no reference for this result. The PSPACE membership (resp. the finite memory of the strategies) follows from [1] (resp. [13]). In [1], games with a union of a Streett objective and a Rabin objective are shown to be PSPACE-hard. It is thus also the case for games with a union of Streett objectives. By Martin’s theorem, it follows that games with an intersection of Rabin objectives are PSPACE-hard.

  17. 17.

    Recall that the payoff function and the preference relation of the second player do not matter in two-player zero-sum games.

  18. 18.

    In [12], one hypothesis is missing: the required optimal strategies must be uniform.

  19. 19.

    We found no reference for Muller objectives. A sketch of proof is given in the appendix. Problem 7 is PSPACE-complete for the colored variant of Muller objectives [26].

  20. 20.

    Recall our comment after Theorem 22.

  21. 21.

    The reduction is given for another kind of solution profile but it also works for NEs.

  22. 22.

    The definition was given for player 1.

  23. 23.

    A restriction to two-player games is necessary to deal with a secure preference that is total.

  24. 24.

    In this particular context, plays are finite paths.

References

  1. Alur, R., La Torre, S., Madhusudan, P.: Playing games with boxes and diamonds. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 128–143. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45187-7_8

    Chapter  Google Scholar 

  2. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI Student Session, pp. 91–98 (2006)

    Google Scholar 

  3. Beeri, C.: On the membership problem for functional and multivalued dependencies in relational databases. ACM Trans. Database Syst. 5(3), 241–259 (1980)

    Article  MATH  Google Scholar 

  4. Berthé, V., Rigo, M. (eds.): Combinatorics, Words and Symbolic Dynamics, vol. 135. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  5. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_14

    Chapter  Google Scholar 

  6. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In: LICS Proceedings, pp. 750–761. IEEE Computer Society (2015)

    Google Scholar 

  7. Bouyer, P., Brenguier, R., Markey, N., Ummels, M.: Pure Nash equilibria in concurrent deterministic games. Logical Methods Comput. Sci. 11(2) (2015)

    Google Scholar 

  8. Brenguier, R.: Robust equilibria in mean-payoff games. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 217–233. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49630-5_13

    Chapter  Google Scholar 

  9. Brenguier, R., Clemente, L., Hunter, P., Pérez, G.A., Randour, M., Raskin, J.-F., Sankur, O., Sassolas, M.: Non-zero sum games for reactive synthesis. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 3–23. Springer, Cham (2016). doi:10.1007/978-3-319-30000-9_1

    Chapter  Google Scholar 

  10. Brenguier, R., Raskin, J.-F., Sankur, O.: Assume-admissible synthesis. Acta Inf. 54(1), 41–83 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brihaye, T., Bruyère, V., Meunier, N., Raskin, J-F.: Weak subgame perfect equilibria and their application to quantitative reachability. In: CSL Proceedings. LIPIcs, vol. 41, pp. 504–518. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  12. Brihaye, T., De Pril, J., Schewe, S.: Multiplayer cost games with simple nash equilibria. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 59–73. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35722-0_5

    Chapter  Google Scholar 

  13. Bruyère, V., Hautem, Q., Raskin, J-F.: On the complexity of heterogeneous multidimensional games. In: CONCUR Proceedings. LIPIcs, vol. 59, pp. 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  14. Bruyère, V., Meunier, N., Raskin, J-F.: Secure equilibria in weighted games. In: CSL-LICS Proceedings, pp. 26:1–26:26. ACM (2014)

    Google Scholar 

  15. Bruyère, V., Le Roux, S., Pauly, A., Raskin, J.-F.: On the existence of weak subgame perfect equilibria. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 145–161. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54458-7_9

    Chapter  Google Scholar 

  16. Buhrke, N., Lescow, H., Vöge, J.: Strategy construction in infinite games with Streett and Rabin chain winning conditions. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 207–224. Springer, Heidelberg (1996). doi:10.1007/3-540-61042-1_46

    Chapter  Google Scholar 

  17. Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasipolynomial time. In: STOC Proceedings. ACM (2017, to appear)

    Google Scholar 

  18. Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.-F.: Doomsday equilibria for omega-regular games. Inf. Comput. 254, 296–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Logic 11, 23 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chatterjee, K., Doyen, L., Randour, M., Raskin, J.-F.: Looking at mean-payoff and total-payoff through windows. Inf. Comput. 242, 25–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chatterjee, K., Dvorák, W., Henzinger, M., Loitzenbauer, V.: Conditionally optimal algorithms for generalized Büchi games. In: MFCS Proceedings. LIPIcs, vol. 58, pp. 25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  22. Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating Büchi games and maximal end-component decomposition. J. ACM 61(3), 15:1–15:40 (2014)

    Article  MATH  Google Scholar 

  23. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Comput. Sci. 365, 67–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 153–167. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71389-0_12

    Chapter  Google Scholar 

  25. Chatterjee, K., Majumdar, R., Jurdziński, M.: On nash equilibria in stochastic games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 26–40. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30124-0_6

    Chapter  Google Scholar 

  26. Condurache, R., Filiot, E., Gentilini, R., Raskin, J-F.: The complexity of rational synthesis. In: Proceedings of ICALP. LIPIcs, vol. 55, pp. 121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  27. De Pril, J.: Equilibria in Multiplayer Cost Games. Ph. D. thesis, University UMONS (2013)

    Google Scholar 

  28. De Pril, J., Flesch, J., Kuipers, J., Schoenmakers, G., Vrieze, K.: Existence of secure equilibrium in multi-player games with perfect information. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 213–225. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44465-8_19

    Google Scholar 

  29. Emerson, E.A.: Automata, tableaux, and temporal logics (extended abstract). In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 79–88. Springer, Heidelberg (1985). doi:10.1007/3-540-15648-8_7

    Chapter  Google Scholar 

  30. Emerson, E.A., Jutla, C.S.: Tree automata, Mu-calculus and determinacy. In: FOCS Proceedings, pp. 368–377. IEEE Computer Society (1991)

    Google Scholar 

  31. Emerson, E.A., Lei, C.-L.: Modalities for model checking: branching time logic strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fijalkow, N., Horn, F.: Les jeux d’accessibilité généralisée. Tech. Sci. Informatiques 32(9–10), 931–949 (2013)

    Article  Google Scholar 

  33. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York (1997)

    MATH  Google Scholar 

  34. Flesch, J., Kuipers, J., Mashiah-Yaakovi, A., Schoenmakers, G., Solan, E., Vrieze, K.: Perfect-information games with lower-semicontinuous payoffs. Math. Oper. Res. 35, 742–755 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fudenberg, D., Levine, D.: Subgame-perfect equilibria of finite-and infinite-horizon games. J. Econ. Theor. 31, 251–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gimbert, H., Zielonka, W.: When can you play positionally? In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 686–697. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28629-5_53

    Chapter  Google Scholar 

  37. Gimbert, H., Zielonka, W.: Games where you can play optimally without any memory. In: Abadi, M., Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 428–442. Springer, Heidelberg (2005). doi:10.1007/11539452_33

    Chapter  Google Scholar 

  38. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  39. Grädel, E., Ummels, M.: Solution concepts and algorithms for infinite multiplayer games. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games and Interaction, vol. 4, pp. 151–178. Amsterdam University Press, Amsterdam (2008)

    Google Scholar 

  40. Harris, C.: Existence and characterization of perfect equilibrium in games of perfect information. Econometrica 53, 613–628 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Horn, F.: Explicit muller games are PTIME. In: FSTTCS Proceedings. LIPIcs, vol. 2, pp. 235–243. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2008)

    Google Scholar 

  42. Hunter, P., Dawar, A.: Complexity bounds for regular games. In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 495–506. Springer, Heidelberg (2005). doi:10.1007/11549345_43

    Chapter  Google Scholar 

  43. Hunter, P., Raskin, J-F.: Quantitative games with interval objectives. In: FSTTCS Proceedings. LIPIcs, vol. 29, pp. 365–377. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

    Google Scholar 

  44. Immerman, N.: Number of quantifiers is better than number of tape cells. J. Comput. Syst. Sci. 22, 384–406 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci. 11, 68–75 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jurdzinski, M.: Deciding the winner in parity games is in UP \(\cap \) co-UP. Inf. Process. Lett. 68(3), 119–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Math. 23, 309–311 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kopczyński, E.: Half-positional determinacy of infinite games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 336–347. Springer, Heidelberg (2006). doi:10.1007/11787006_29

    Chapter  Google Scholar 

  49. Kuhn, H.W.: Extensive games and the problem of information. In: Classics in Game Theory, pp. 46–68 (1953)

    Google Scholar 

  50. Lothaire, M.: Algebraic Combinatorics on Words, vol. 90. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  51. Martin, D.A.: Borel determinacy. Ann. Math. 102, 363–371 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65(2), 149–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nash, J.F.: Equilibrium points in \(n\)-person games. In: PNAS, vol. 36, pp. 48–49. National Academy of Sciences (1950)

    Google Scholar 

  54. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  55. Perrin, D., Pin, J.-E.: Infinite Words, Automata, Semigroups, Logic and Games, vol. 141. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  56. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: LICS Proceedings, pp. 275–284. IEEE Computer Society (2006)

    Google Scholar 

  57. Purves, R.A., Sudderth, W.D.: Perfect information games with upper semicontinuous payoffs. Math. Oper. Res. 36(3), 468–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rényi, A.: Representations of real numbers and their ergodic properties. Acta Math. Acad. Scientiarum Hung. 8(3–4), 477–493 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  59. Le Roux, S., Pauly, A.: Extending finite memory determinacy to multiplayer games. In: Proceedings of SR. EPTCS, vol. 218, pp. 27–40 (2016)

    Google Scholar 

  60. Safra, S., Vardi, M.Y.: On omega-automata and temporal logic (preliminary report). In: Proceedings of STOC, pp. 127–137. ACM (1989)

    Google Scholar 

  61. Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Z. die gesamte Staatswissenschaft 121, 301–324 (1965). pp. 667–689

    Google Scholar 

  62. Solan, E., Vieille, N.: Deterministic multi-player Dynkin games. J. Math. Econ. 39, 911–929 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 212–223. Springer, Heidelberg (2006). doi:10.1007/11944836_21

    Chapter  Google Scholar 

  64. Ummels, M.: The complexity of nash equilibria in infinite multiplayer games. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 20–34. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78499-9_3

    Chapter  Google Scholar 

  65. Ummels, M., Wojtczak, D.: The complexity of nash equilibria in limit-average games. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 482–496. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6_32

    Chapter  Google Scholar 

  66. Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in limit-average games. CoRR, abs/1109.6220 (2011)

    Google Scholar 

  67. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  68. Velner, Y.: Robust multidimensional mean-payoff games are undecidable. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 312–327. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46678-0_20

    Chapter  Google Scholar 

  69. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin, J.-F.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput. 241, 177–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  71. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158, 343–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Patricia Bouyer, Thomas Brihaye, Emmanuel Filiot, Hugo Gimbert, Quentin Hautem, Mickaël Randour, and Jean-François Raskin for their useful discussions and comments that helped us to improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Bruyère .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, we give a sketch of proof for Muller games in Theorem 31. Recall that each player i has the objective \(\varOmega _i = \{\rho \in Plays\mid inf(\rho ) \in \mathcal{F}_i \}\) with \(\mathcal{F}_i \subseteq 2^V\), and that the values \(val_i(v)\), \(v \in V\), in each game \(G_i\) can be computed in polynomial time (Theorem 21). To prove P membership for the constraint problem with bounds \((\mu _i)_{i \in \varPi }, (\nu _i)_{i \in \varPi }\), we apply the approach (3). Notice that for the required play \(\rho \in Plays(v_0)\) in (3), the set \(U = inf(\rho )\) must be a strongly connected component that is reachable from the initial vertex \(v_0\). Moreover if for some i, \(f_i(\rho ) = 0\) then \({val}_i(\rho _k) = 0\) for all \(\rho _k \in V_i\), and if \(\nu _i = 0\), then \(f_i(\rho ) = 0\). We thus proceed as follows. (i) For each i such that \(\nu _i = 1\), for each \(U \in \mathcal{F}_i\) (seen as a potential \(U = inf(\rho )\)), the following computations are done in polynomial time for all \(j\in \varPi \):

  • if \(\mu _j = 1\) ((3) imposes \(f_j(\rho ) = 1\)), test whether \(U \in \mathcal{F}_j\),

  • if \(\nu _j = 0\) ((3) imposes \(f_j(\rho ) = 0\)), test whether \(U \not \in \mathcal{F}_j\) and whether each \(v \in U \cap V_j\) has value \({val}_j(v) = 0\),

  • if \(\mu _j = 0\) and \(\nu _j = 1\) ((3) allows either \(f_j(\rho ) = 0\) or \(f_j(\rho ) = 1\)), then if \(U \not \in \mathcal{F}_j\), test whether each \(v \in U \cap V_j\) has value \({val}_j(v) = 0\).

Finally, construct in polynomial time the game \(G'\) from G such that each \(V_j\) is limited to \(\{v \in V_j \mid {val}_j(v) = 0 \}\) whenever \(U \not \in \mathcal{F}_j\), and test whether U is a strongly connected component that is reachable from \(v_0\) in \(G'\). As soon as this sequence of tests is positive, there exists \(\rho \) satisfying (3). (ii) It may happen that step (i) cannot be applied (because there is no j such that \(\mu _j = 1\), and for j such that \(\mu _j = 0\) and \(\nu _j = 1\), there is no potential \(U = inf(\rho )\)). In this case, we construct in polynomial time a two-player game \(G'\) from G such that each \(V_i\) is limited to \(\{v \in V_i \mid {val}_i(v) = 0 \}\), player 1 controls no vertex and player 2 is formed by the coalition of all \(i \in \varPi \), and the objective is a Muller objective with \(\mathcal{F} = \cup _{i\in \varPi } \mathcal{F}_i\). We then test in polynomial time whether player 1 has no winning strategy from \(v_0\) in this Muller game.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bruyère, V. (2017). Computer Aided Synthesis: A Game-Theoretic Approach. In: Charlier, É., Leroy, J., Rigo, M. (eds) Developments in Language Theory. DLT 2017. Lecture Notes in Computer Science(), vol 10396. Springer, Cham. https://doi.org/10.1007/978-3-319-62809-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62809-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62808-0

  • Online ISBN: 978-3-319-62809-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics