Skip to main content

Microbial Responses to Pollution—Ecotoxicology: Introducing the Different Biological Levels

  • Chapter
  • First Online:
Microbial Ecotoxicology

Abstract

The environmental pollutions generated by human activities are important concerns that environmental risk assessment procedures have the purpose to evaluate and mitigate the effects. Microorganisms are among the first impacted by human generated pollutions. Furthermore, because they are essential actors in ecosystem functioning the evaluation of the pollution effects on microorganisms is of paramount importance. Their response may serve as proxy to report the effects on, and the recovering capacities of, the ecosystem. The behaviour of microorganisms in response to chemical pollution has been largely studied. In this chapter, we introduce the mechanisms underlying the microbial adaptation capacities involved in response to pollutants . We also discuss the basic knowledge inspiring microbial ecotoxicological tools reporting the pollutant effects that have been developed at the different biological organization levels, from genes and cellular processes to population and microbial community responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abella J, Bielen A, Huang L, Delmont TO, Vujaklija D, Duran R, Cagnon C (2015a) Integron diversity in marine environments. Environ Sci Pollut Res 22:15360–15369

    Article  CAS  Google Scholar 

  • Abella J, Fahy A, Duran R, Cagnon C (2015b) Integron diversity in bacterial communities of freshwater sediments at different contamination levels. FEMS Microbiol Ecol 91:fiv140

    Google Scholar 

  • Acosta-González A, Marqués S (2016) Bacterial diversity in oil-polluted marine coastal sediments. Curr Opin Biotechnol 38:24–32

    Article  PubMed  CAS  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arber W (2000) Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7

    Article  CAS  PubMed  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    Article  CAS  Google Scholar 

  • Azarbad H, Niklińska M, Nikiel K, van Straalen NM, Röling WFM (2015) Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress? Biol Fertil Soils 51:879–890

    Article  CAS  Google Scholar 

  • Baquero F (2009) Environmental stress and evolvability in microbial systems. Clin Microbiol Infect 15:5–10

    Article  PubMed  Google Scholar 

  • Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Bargiela R, Mapelli F, Rojo D et al (2015) Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Scientific Reports 5

    Google Scholar 

  • Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in applied microbiology, Vol 57. pp 1–52

    Google Scholar 

  • Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 106:25–36

    Article  CAS  PubMed  Google Scholar 

  • Barraud O, Casellas M, Dagot C, Ploy MC (2013) An antibiotic-resistant class 3 integron in an Enterobacter cloacae isolate from hospital effluent. Clin Microbiol Infect 19:E306–E308

    Article  CAS  PubMed  Google Scholar 

  • Barriuso E, Calvet R, Schiavon M, Soulas G (1996) Les pesticides et les polluants organiques des sols. Etude et gestion des sols 3:279–295

    Google Scholar 

  • Baxter J, Cummings SP (2008) The degradation of the herbicide bromoxynil and its impact on bacterial diversity in a top soil. J Appl Microbiol 104:1605–1616

    Article  CAS  PubMed  Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74

    Article  CAS  PubMed  Google Scholar 

  • Beketov MA, Liess M (2012) Ecotoxicology and macroecology—Time for integration. Environ Pollut 162:247–254

    Article  CAS  PubMed  Google Scholar 

  • Ben Said O, Louati H, Soltani A et al. (2015) Changes of benthic bacteria and meiofauna assemblages during bio-treatments of anthracene-contaminated sediments from Bizerta lagoon (Tunisia). Environ Sci Pollut Res

    Google Scholar 

  • Bickhart DM, Gogarten JP, Lapierre P, Tisa LS, Normand P, Benson DR (2009) Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia. Bmc Genomics 10

    Google Scholar 

  • Bogan BW, Sullivan WR (2003) Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52:1717–1726

    Article  CAS  PubMed  Google Scholar 

  • Boivin MEY, Massieux B, Breure AM, Greve GD, Rutgers M, Admiraal W (2006) Functional recovery of biofilm bacterial communities after copper exposure. Environ Pollut 140:239–246

    Article  CAS  PubMed  Google Scholar 

  • Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2007) Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol 22:78–91

    Article  CAS  PubMed  Google Scholar 

  • Bordenave S, Goñi-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordenave S, Fourçans A, Blanchard S, Goñi MS, Caumette P, Duran R (2004) Structure and functional analyses of bacterial communities changes in microbial mats following petroleum exposure. Ophelia 58:195–203

    Article  Google Scholar 

  • Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–777

    Article  CAS  PubMed  Google Scholar 

  • Boyd EF, Almagro-Moreno S, Parent MA (2009) Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol 17:47–53

    Article  CAS  PubMed  Google Scholar 

  • Brazilian National Genome Project Consortium (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci USA 100:11660–11665

    Article  CAS  Google Scholar 

  • Brochier-Armanet C, Deschamps P, Lopez-Garcia P, Zivanovic Y, Rodriguez-Valera F, Moreira D (2011) Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea. ISME J 5:1291–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  PubMed  Google Scholar 

  • Bruneel O, Pascault N, Egal M et al (2008) Archaeal diversity in a Fe-As rich acid mine drainage at Carnoulès (France). Extremophiles 12:563–571

    Article  CAS  PubMed  Google Scholar 

  • Caliz J, Vila X, Marti E, Sierra J, Cruanas R, Garau MA, Montserrat G (2011) Impact of chlorophenols on microbiota of an unpolluted acidic soil: microbial resistance and biodegradation. FEMS Microbiol Ecol 78:150–164

    Article  CAS  PubMed  Google Scholar 

  • Calvet R (1989) Adsorption of organic chemicals in soils. Environ Health Perspect 83:145–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia C (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cervantes-Avilés P, Brito EMS, Duran R, Martínez AB, Cuevas-Rodríguez G (2016) Effect of ZnO nanoparticles in the oxygen uptake during aerobic wastewater treatment. J Nanopart Res 18

    Google Scholar 

  • Cervantes C, Ji GY, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    Article  CAS  PubMed  Google Scholar 

  • Chae JC, Kim E, Bini E, Zystra GJ (2007) Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2. Biochem Biophys Res Commun 357:815–819

    Article  CAS  PubMed  Google Scholar 

  • Chavez FP, Gordillo F, Jerez CA (2006) Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls. Biotechnol Adv 24:309–320

    Article  CAS  PubMed  Google Scholar 

  • Chessa L, Jechalke S, Ding GC, Pusino A, Mangia NP, Smalla K (2016) The presence of tetracycline in cow manure changes the impact of repeated manure application on soil bacterial communities. Biol Fertil Soils 52:1121–1134

    Article  CAS  Google Scholar 

  • Chronopoulou P-M, Fahy A, Coulon F et al (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms. Environ Microbiol 15:242–252

    Article  CAS  PubMed  Google Scholar 

  • Chung N, Alexander M (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48:109–115

    Article  CAS  PubMed  Google Scholar 

  • Concha-Guerrero SI, Brito EMS, Piñón-Castillo HA et al. (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomaterials

    Google Scholar 

  • Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era. Frontiers in Microbiol 5:39

    Article  Google Scholar 

  • Dachs J, Eisenreich SJ, Hoff RM (2000) Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants. Environ Sci Technol 34:1095–1102

    Article  CAS  Google Scholar 

  • Darmon E, Leach DRF (2014) Bacterial genome instability. Microbiol Mol Biol Rev 78:1–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Grosso M, Northwood JGE, Farrell DJ, Pantosti A (2007) The macrolide resistance genes erm(B) and mef(E) are carried by Tn2010 in dual-gene Streptococcus pneumoniae isolates belonging to clonal complex CC271. Antimicrob Agents Chemother 51:4184–4186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delgado-Baquerizo M, Giaramida L, Reich PB et al (2016) Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol 104:936–946

    Article  Google Scholar 

  • Diaz E, Jimenez JI, Nogales J (2013) Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 24:431–442

    Article  CAS  PubMed  Google Scholar 

  • Diepens NJ, Arts GHP, Brock TCM, Smidt H, Van Den Brink PJ, Van Den Heuvel-Greve MJ, Koelmans AA (2014) Sediment toxicity testing of organic chemicals in the context of prospective risk assessment: A review. Crit Rev Environ Sci Technol 44:255–302

    Article  Google Scholar 

  • Dominique Y, Muresan B, Duran R, Richard S, Boudou A (2007) Simulation of the chemical fate and bioavailability of liquid elemental mercury drops from gold mining in Amazonian freshwater systems. Environ Sci Technol 41:7322–7329

    Article  CAS  PubMed  Google Scholar 

  • Doyle E, Muckian L, Hickey AM, Clipson N (2008) Microbial PAH degradation. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 65. pp 27–66

    Google Scholar 

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Duran R, Bielen A, Paradžik T et al (2015) Exploring Actinobacteria assemblages in coastal marine sediments under contrasted human influences in the West Istria Sea, Croatia. Environ Sci Pollut Res

    Google Scholar 

  • Duran R, Menuet V, Monperrus M et al (2003) Monitoring bacterial communities adaptation to mercury contamination in estuarine sediments maintained in slurries. vol 107, pp 393–396

    Google Scholar 

  • Duran R, Ranchou-Peyruse M, Menuet V et al (2008) Mercury methylation by a microbial community from sediments of the Adour Estuary (Bay of Biscay, France). Environ Pollut 156:951–958

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Feldgarden M, Byrd N, Cohan FM (2003) Gradual evolution in bacteria: evidence from Bacillus systematics. Microbiology-Sgm 149:3565–3573

    Article  CAS  Google Scholar 

  • Ferenci T (2016) Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol 24:209–223

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12

    Article  CAS  PubMed  Google Scholar 

  • Foley ME, Sigler V, Gruden CL (2007) A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. ISME J 2:56–66

    Article  PubMed  CAS  Google Scholar 

  • Fong KPY, Goh CBH, Tan HM (2000) The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542. Plasmid 43:103–110

    Article  CAS  PubMed  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  PubMed  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  PubMed  Google Scholar 

  • Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10:1719–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giakkoupi P, Tryfinopoulou K, Polemis M, Pappa O, Miriagou V, Vatopoulos A (2015) Circulation of a multiresistant, conjugative, IncA/C plasmid within the nosocomial Providencia stuartii population in the Athens area. Diagn Microbiol Infect Dis 82:62–64

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R, Berlanga M (2006) Life’s unity and flexibility: the ecological link. Int Microbiol 9:225–235

    CAS  PubMed  Google Scholar 

  • Guieysse B, Wuertz S (2012) Metabolically versatile large-genome prokaryotes. Curr Opin Biotechnol 23:467–473

    Article  CAS  PubMed  Google Scholar 

  • Hansson K, Sundstrom L, Pelletier A, Roy PH (2002) IntI2 integron integrase in Tn7. J Bacteriol 184:1712–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Micro 4:173–182

    Article  CAS  Google Scholar 

  • Heider J, Schühle K (2013) Anaerobic biodegradation of hydrocarbons including methane. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry, pp 605–634,.Springer, Berlin, Heidelberg

    Google Scholar 

  • Heuer H, Abdo Z, Smalla K (2008) Patchy distribution of flexible genetic elements in bacterial populations mediates robustness to environmental uncertainty. FEMS Microbiol Ecol 65:361–371

    Article  CAS  PubMed  Google Scholar 

  • Hjorth M, Vester J, Henriksen P, Forbes V, Dahllöf I (2007) Functional and structural responses of marine plankton food web to pyrene contamination. Mar Ecol Prog Ser 338:21–31

    Article  CAS  Google Scholar 

  • Huang L, Cagnon C, Caumette P, Duran R (2009) First gene cassettes of integrons as targets in finding adaptive genes in metagenomes. Appl Environ Microbiol 75:3823–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K et al (2016) A new view of the tree of life. Nature Microbiology 1:16048

    Article  CAS  PubMed  Google Scholar 

  • Ibekwe AM, Ma JC, Murinda SE (2016) Bacterial community composition and structure in an Urban River impacted by different pollutant sources. Sci Total Environ 566:1176–1185

    Article  PubMed  CAS  Google Scholar 

  • Ilori MO, Picardal FW, Aramayo R, Adebusoye SA, Obayori OS, Benedik MJ (2015) Catabolic plasmid specifying polychlorinated biphenyl degradation in Cupriavidus sp strain SK-4: mobilization and expression in a pseudomonad. J Basic Microbiol 55:338–345

    Article  CAS  PubMed  Google Scholar 

  • Jacquiod S, Demaneche S, Franqueville L et al (2014) Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library. J Biotechnol 190:18–29

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Ji GY, Silver S (1992) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid PI258. J Bacteriol 174:3684–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao S, Zhang Z, Yang F, Lin Y, Chen W, Wei G (2016) Temporal dynamics of microbial communities in microcosms in response to pollutants. Mol Ecol n/a-n/a

    Google Scholar 

  • Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752

    Article  CAS  PubMed  Google Scholar 

  • Koenig JE, Sharp C, Dlutek M, Curtis B, Joss M, Boucher Y, Doolittle WF (2009) Integron gene cassettes and degradation of compounds associated with industrial waste: the case of the sydney tar ponds. Plos One 4

    Google Scholar 

  • Kokkali V, van Delft W (2014) Overview of commercially available bioassays for assessing chemical toxicity in aqueous samples. TrAC—Trends Anal Chem 61:133–155

    Article  CAS  Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korona-Glowniak I, Siwiec R, Malm A (2015) Resistance determinants and their association with different transposons in the antibiotic-resistant Streptococcus pneumoniae. Biomed Res Int Article ID 836496

    Google Scholar 

  • Kumar N, Shah V, Walker VK (2012) Influence of a nanoparticle mixture on an arctic soil community. Environ Toxicol Chem 31:131–135

    Article  CAS  PubMed  Google Scholar 

  • Lauga B, Girardin N, Karama S, Le Ménach K, Budzinski H, Duran R (2013) Removal of alachlor in anoxic soil slurries and related alteration of the active communities. Environ Sci Pollut Res 20:1089–1105

    Article  CAS  Google Scholar 

  • Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523

    Article  CAS  PubMed  Google Scholar 

  • Lennon JT, Locey KJ (2016) The underestimation of global microbial diversity. mBio 7

    Google Scholar 

  • Li ZJ, Xu JM, Tang CX, Wu JJ, Muhammad A, Wang HZ (2006) Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere 62:1374–1380

    Article  CAS  PubMed  Google Scholar 

  • Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Haas S, Zemojtel T, Xiao P, Vingron M, Li RH (2011) Genome-wide comparison of cyanobacterial transposable elements, potential genetic diversity indicators. Gene 473:139–149

    Article  CAS  PubMed  Google Scholar 

  • Lubarsky HV, Gerbersdorf SU, Hubas C, Behrens S, Ricciardi F, Paterson DM (2012) Impairment of the bacterial biofilm stability by Triclosan. Plos One 7

    Google Scholar 

  • Ma J, Nossa CW, Alvarez PJJ (2015) Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume. Water Res 80:119–129

    Article  CAS  PubMed  Google Scholar 

  • Ma XY, Wang XC, Ngo HH, Guo W, Wu MN, Wang N (2014) Bioassay based luminescent bacteria: interferences, improvements, and applications. Sci Total Environ 468–469:1–11

    Article  PubMed  CAS  Google Scholar 

  • Marri PR, Hao WL, Golding GB (2006) Gene gain and gene loss in Streptococcus: is it driven by habitat? Mol Biol Evol 23:2379–2391

    Article  CAS  PubMed  Google Scholar 

  • Matic I, Rayssiguier C, Radman M (1995) Interspecies gene exchange in bacteria—the role of SOS and mismatch repair systems in evolution of species. Cell 80:507–515

    Article  CAS  PubMed  Google Scholar 

  • Matsumura F (1989) Biotic degradation of pollutants. In: Bourdeau P, Haines JA, Klein W, Krishna Murti CR Ecotoxicology and Climate, pp 79–89, John Wiley

    Google Scholar 

  • Mauffret A, Baran N, Joulian C (2017) Effect of pesticides and metabolites on groundwater bacterial community. Sci Total Environ 576:879–887

    Article  CAS  PubMed  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquatic Biosystems 8

    Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H et al (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118

    Article  CAS  PubMed  Google Scholar 

  • Mertens J, Ruyters S, Springael D, Smolders E (2007) Resistance and resilience of zinc tolerant nitrifying communities is unaffected in long-term zinc contaminated soils. Soil Biol Biochem 39:1828–1831

    Article  CAS  Google Scholar 

  • Misson B, Garnier C, Lauga B et al (2016) Chemical multi-contamination drives benthic prokaryotic diversity in the anthropized Toulon Bay. Sci Total Environ 556:319–329

    Article  CAS  PubMed  Google Scholar 

  • Monard C, Vandenkoornhuyse P, Le Bot B, Binet F (2011) Relationship between bacterial diversity and function under biotic control: the soil pesticide degraders as a case study. ISME J 5:1048–1056

    Article  CAS  PubMed  Google Scholar 

  • Mongodin EF, Shapir N, Daugherty SC et al (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2:e214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreno-Jiménez E, Clemente R, Mestrot A, Meharg AA (2013) Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation. Environ Pollut 173:238–244

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Juottonen H, Siivonen P, Lloret Quesada C, Tuomi P, Pulkkinen P, Yrjala K (2014) Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site. ISME J 8:2131–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murinova S, Dercova K (2014) Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol 873081:26

    Google Scholar 

  • Mustafa GA, Abd-Elgawad A, Ouf A, Siam R (2016) The Egyptian Red Sea coastal microbiome: a study revealing differential microbial responses to diverse anthropogenic pollutants. Environ Pollut 214:892–902

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu C, Ng J, Singh R, Straus N, Wyndham C (1991) Chlorobenzoate catabolic transposon TN5271 is a composite class-I element with flanking class-II insertion sequences. Proc Natl Acad Sci USA 88:8312–8316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson KE, Fraser CM (2004) Champions of versatility. Trends Microbiol 12:111–112

    Article  CAS  PubMed  Google Scholar 

  • Newman MC (2015) Fundamentals of ecotoxicology the science of pollution. CRC Press, Boca Raton (Fla.) London, New York

    Google Scholar 

  • Novais A, Baquero F, Machado E, Canton R, Peixe L, Coque TM (2010) International spread and persistence of TEM-24 is caused by the confluence of highly penetrating Enterobacteriaceae clones and an IncA/C-2 plasmid containing Tn1696:Tn1 and IS5075-Tn21. Antimicrob Agents Chemother 54:825–834

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  PubMed  Google Scholar 

  • Paissé S, Coulon F, Goñi-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305

    Article  PubMed  CAS  Google Scholar 

  • Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15:374–379

    Article  CAS  PubMed  Google Scholar 

  • Parales RE, Luu RA, Hughes JG, Ditty JL (2015) Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs. Curr Opin Biotechnol 33:318–326

    Article  CAS  PubMed  Google Scholar 

  • Pascault N, Roux S, Artigas J et al (2014) A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole. FEMS Microbiol Ecol 90:563–574

    Article  CAS  PubMed  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  PubMed  Google Scholar 

  • Paule A, Roubeix V, Lauga B, Duran R, Delmas F, Paul E, Rols JL (2013) Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms. Aquat Toxicol 144–145:310–321

    Article  PubMed  CAS  Google Scholar 

  • Pester M, Bittner N, Deevong P, Wagner M, Loy A (2010) A “rare biosphere” microorganism contributes to sulfate reduction in a peatland. ISME J 4:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

    Article  CAS  PubMed  Google Scholar 

  • Pieper DH, Martins Dos Santos VAP, Golyshin PN (2004) Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr Opin Biotechnol 15:215–224

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy LR, le Williams PJB, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20:28–33

    Article  Google Scholar 

  • Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. Rsc Advances 6:109862–109877

    Article  CAS  Google Scholar 

  • Puglisi E, Hamon R, Vasileiadis S, Coppolecchia D, Trevisan M (2012) Adaptation of soil microorganisms to trace element contamination: A review of mechanisms, methodologies, and consequences for risk assessment and remediation. Crit Rev Environ Sci Technol 42:2435–2470

    Article  Google Scholar 

  • Rabus R, Boll M, Heider J et al (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28

    Article  CAS  PubMed  Google Scholar 

  • Ramond JB, Berthe T, Duran R, Petit F (2009) Comparative effects of mercury contamination and wastewater effluent input on Gram-negative merA gene abundance in mudflats of an anthropized estuary (Seine, France): a microcosm approach. Res Microbiol 160:10–18

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-R LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J 9:1928–1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK et al (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  CAS  PubMed  Google Scholar 

  • Sentchilo V, Mayer AP, Guy L et al (2013) Community-wide plasmid gene mobilization and selection. ISME J 7:1173–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahgholi H, Gholamalizadeh Ahangar A (2014) Factors controlling degradation of pesticides in the soil environment: a Review. Agriculture Science Developments 3:273–278

    Google Scholar 

  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Scientific Reports 6

    Google Scholar 

  • Simonin M, Martins JMF, Le Roux X, Uzu G, Calas A, Richaume A (2017) Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships. Nanotoxicology 1–9

    Google Scholar 

  • Singh BK, Quince C, Macdonald CA et al (2014) Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol 16:2408

    Article  PubMed  Google Scholar 

  • Smalla K, Sobecky PA (2002) The prevalence and diversity of mobile genetic elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol Ecol 42:165–175

    Article  CAS  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere. Proc Natl Acad Sci 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sota M, Yano H, Ono A et al (2006) Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol 188:4057–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowers KR, May HD (2013) In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? Curr Opin Biotechnol 24:482–488

    Article  CAS  PubMed  Google Scholar 

  • Spagnuolo M, Puglisi E, Vernile P, Bari G, de Lillo E, Trevisan M, Ruggiero P (2010) Soil monitoring of pentachlorophenol by bioavailability and ecotoxicity measurements. J Environ Monit 12:1575–1581

    Article  CAS  PubMed  Google Scholar 

  • Springael D, Top EM (2004) Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends Microbiol 12:53–58

    Article  CAS  PubMed  Google Scholar 

  • Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC (2012) Integron involvement in environmental spread of antibiotic resistance. Frontiers Microbiol 3

    Google Scholar 

  • Stauffert M, Cravo-Laureau C, Duran R (2015a) Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor. Environ Sci Pollut Res 22:15273–15284

    Article  CAS  Google Scholar 

  • Stauffert M, Cravo-Laureau C, Duran R (2015b) Structure of hydrocarbonoclastic nitrate-reducing bacterial communities in bioturbated coastal marine sediments. FEMS Microbiol Ecol 89:580–593

    Article  CAS  Google Scholar 

  • Stauffert M, Duran R, Gassie C, Cravo-Laureau C (2014) Response of archaeal communities to oil spill in bioturbated mudflat sediments. Microb Ecol 67:108–119

    Article  CAS  PubMed  Google Scholar 

  • Stauffert M, Cravo-Laureau C, Jézéquel R et al (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS ONE 8

    Google Scholar 

  • Stokes HW, Hall RM (1991) Sequence analysis of the inducible chloramphenicol resistance determinant in the TN1696 integron suggests regulation by translational attenuation. Plasmid 26:10–19

    Article  CAS  PubMed  Google Scholar 

  • Stokes HW, Gillings MR (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 35:790–819

    Article  CAS  PubMed  Google Scholar 

  • Thomas CM, Smalla K (2000) Trawling the horizontal gene pool. Microbiol Today 27:24–27

    Google Scholar 

  • Tobor-Kapłon MA, Bloem J, Römkens PFAM, Ruiter PCd (2005) Functional stability of microbial communities in contaminated soils. Oikos 111:119–129

    Article  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

    Article  CAS  PubMed  Google Scholar 

  • Tuffin IM, de Groot P, Deane SM, Rawlings DE (2005) An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiol Sgm 151:3027–3039

    Article  CAS  Google Scholar 

  • Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penades JR (2005) Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 56:836–844

    Article  CAS  PubMed  Google Scholar 

  • Ufarte L, Laville E, Duquesne S, Potocki-Veronese G (2015) Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 33:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van der Meer JR, Zehnder AJB, Devos WM (1991) Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp strain P51. J Bacteriol 173:7077–7083

    Article  PubMed  PubMed Central  Google Scholar 

  • Vercraene-Eairmal M, Lauga B, Saint Laurent S et al (2010) Diuron biotransformation and its effects on biofilm bacterial community structure. Chemosphere 81:837–843

    Article  CAS  PubMed  Google Scholar 

  • Viret H, Pringault O, Duran R (2006) Impact of zinc and nickel on oxygen consumption of benthic microbial communities assessed with microsensors. Sci Total Environ 367:302–311

    Article  CAS  PubMed  Google Scholar 

  • Volant A, Bruneel O, Desoeuvre A et al (2014) Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiol Ecol 90:247–263

    Article  CAS  PubMed  Google Scholar 

  • Walker A (1987) Further observations on the enhanced degradation of iprodione and vinclozolin in soil. Pestic Sci 21:219–231

    Article  CAS  Google Scholar 

  • Wang ZG, Liu S, Xu WH, Hu YL, Hu Y, Zhang Y (2016) The microbiome and functions of black soils are altered by dibutyl phthalate contamination. Appl Soil Ecol 99:59–69

    Article  CAS  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241

    Article  CAS  PubMed  Google Scholar 

  • Widenfalk A, Bertilsson S, Sundh I, Goedkoop W (2008) Effects of pesticides on community composition and activity of sediment microbes—responses at various levels of microbial community organization. Environ Pollut 152:576–584

    Article  CAS  PubMed  Google Scholar 

  • Woignier T, Fernandes P, Soler A, Clostre F, Carles C, Rangon L, Lesueur-Jannoyer M (2013) Soil microstructure and organic matter: Keys for chlordecone sequestration. J Hazard Mater 262:357–364

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Zhu QH, Zeng J, Ding QM, Gong Y, Xing P, Lin XG (2016) Effects of pH and polycyclic aromatic hydrocarbon pollution on thaumarchaeotal community in agricultural soils. J Soils Sediments 16:1960–1969

    Article  CAS  Google Scholar 

  • Xiao F, Gulliver JS, Simcik MF (2013) Predicting aqueous solubility of environmentally relevant compounds from molecular features: a simple but highly effective four-dimensional model based on Project to Latent Structures. Water Res 47:5362–5370

    Article  CAS  PubMed  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano H, Garruto CE, Sota M et al (2007) Complete sequence determination combined with analysis of transposition/site-specific recombination events to explain genetic organization of IncP-7 TOL plasmid pWW53 and related mobile genetic elements. J Mol Biol 369:11–26

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld JR, Nemergut DR, Knight R (2008) Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns. Microbiol-Sgm 154:1–15

    Article  CAS  Google Scholar 

  • Zaneveld JRR, Parfrey LW, Van Treuren W et al (2011) Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends Microbiol 19:472–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all partners of the MELODY group for their useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Cravo-Laureau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cravo-Laureau, C., Lauga, B., Cagnon, C., Duran, R. (2017). Microbial Responses to Pollution—Ecotoxicology: Introducing the Different Biological Levels. In: Cravo-Laureau, C., Cagnon, C., Lauga, B., Duran, R. (eds) Microbial Ecotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-61795-4_4

Download citation

Publish with us

Policies and ethics