Skip to main content

Bacterial Metabolism of Selenium—For Survival or Profit

  • Chapter
  • First Online:
Bioremediation of Selenium Contaminated Wastewater

Abstract

Selenium (Se) is transformed by phylogenetically diverse bacteria following several basic strategies which include: (1) satisfying a trace element requirement for bacterial synthetic machinery (assimilatory metabolism), (2) cellular energy production coupled to oxidation/reduction reactions (dissimilatory metabolism), and (3) detoxification processes. Some bacteria can use Se for respiration under limiting anaerobic conditions, generating energy to sustain growth. Under aerobic conditions, Se behaves as a toxicant and bacteria have evolved different strategies to counteract it. An important detoxification mechanism involves the formation of Se nanoparticles with a diminished toxic potential, but the cells have to properly manage these products in order to maintain their integrity. The bacterial metabolism of Se can be regarded as a survival mechanism when Se compounds prove to be highly toxic. Secondly, selenium is used to obtain energy in a nutrient-depleted environment, therefore allowing to specialized bacterial species to prevail over competitors that cannot exploit this resource. To achieve the Se metabolic activities, numerous unique enzymes are employed. While some enzymes have been isolated and are markedly specific for Se, many of the Se enzymes remain to be isolated. The formation of Se nanoparticles inside bacteria and the transportation mechanisms to the extracellular environment are still under debate. Se nanoparticles do not appear to play a nutritional (energy storage) or ecological function for bacteria, being by-products of bacterial metabolism. However, from a biotechnological standpoint, these conversions could be used to (1) clean up industrial effluents rich in Se and (2) to produce biomaterials with industrial applications (biofactory).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DSeR:

Dissimilatory selenate reduction

GSH:

Glutathione

M:

Molar

NAD+ :

Nicotinamide adenine dinucleotide

NP:

Nanoparticle

QD:

Quantum dots

ROS:

Reactive oxygen species

Se:

Selenium

Se0 :

Elemental selenium (zero valence state)

Se(IV):

Selenite, SeO3 2−

Se(VI):

Selenate, SeO4 2−

Sec:

Selenocysteine

SefA:

Selenium factor A

SeMet:

Selenomethionine

SeO x :

Selenium oxyanions (selenite and selenate)

SerABC:

Selenate reductase isolated from Thauera selenatis

SOD:

Superoxide dismutase

SRB:

Sulfate-reducing bacteria

References

  • Afkar E, Lasak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112

    Article  CAS  Google Scholar 

  • Barton LL, Nuttall HE Jr, Blake RC II (1994) Biocolloid formation: an approach to bioremediation of toxic metal wastes. In: Wise DL, Trantolo DJ (eds) Remediation of hazardous waste contaminated soils. Marcel Dekker, New York, USA

    Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98

    Article  CAS  Google Scholar 

  • Barton LL, Tomei-Torres FA, Xu H, Zocco T (2014) Nanoparticles formed by microbial metabolism of metals and minerals. In: Barton LL, Bazylinski DA, Hufang Xu (eds) Nanomicrobiology—physiological and environmental characteristics. Springer, New York, USA

    Google Scholar 

  • Bebien M, Chauvin J-P, Adriano J-M, Grosse S, Vermeglio A (2001) Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 6:4440–4447

    Article  Google Scholar 

  • Bebien M, Kirsch J, Mejean V, Vermeglio A (2002a) Involvement of a putative molybdenum enzyme in the rediction of selenate by Escherichia coli. Microbiol 148:3865–3872

    Article  CAS  Google Scholar 

  • Bebien M, Lagniel G, Garin J, Touati D, Vermeglio A, Labarre J (2002b) Involvement of superoxide dismutases in the response of Escherichia coli to selenium oxides. J Bacteriol 184:1556–1564

    Article  CAS  Google Scholar 

  • Blake RC II, Choate DM, Bardhan S, Revis N, Barton LL, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 1:1365–1376

    Article  Google Scholar 

  • Brown TA, Shrift A (1980) Assimilation of selenate and selenite by Salmonella typhimurium. Can J Microbiol 26:671–675

    Article  CAS  Google Scholar 

  • Bryant RD, Laishley EJ (1988) Evidence for two transporters of sulfur and selenium oxyanions in Clostridium pasteurianum. Can J Microbiol 34:700–703

    Article  CAS  Google Scholar 

  • Buchs B, Evangelou MWH, Winkel LHE, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47:2401–2407

    Article  CAS  Google Scholar 

  • Butler CS, Debieux CM, Dridge EJ, Splatt P, Wright M (2012) Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem Soc Trans 40:1239–1243

    Article  CAS  Google Scholar 

  • Canstein Hv, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  CAS  Google Scholar 

  • Chapman PM, Adams WJ, Brooks M, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw P (2010) Ecological assessment of selenium in the aquatic environments. SETAC Press, Pensacola

    Book  Google Scholar 

  • Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Love J, Titball RW, Lewis RJ, Richardson DJ, Butler CS (2011) A bacterial process for selenium nanospehere assembly. Proc Natl Acad Sci USA 108:13480–13485

    Article  CAS  Google Scholar 

  • Dobias J, Suvorova EI, Bernier-Latmani R (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22:196505

    Article  CAS  Google Scholar 

  • DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental reduction. Arc Microbiol 160:241–247

    CAS  Google Scholar 

  • Doran JW (1982) Microorganisms and the biological cycling of selenium. Adv Microbiol Ecol 6:1–32

    Article  CAS  Google Scholar 

  • Doran JW, Alexander M (1977) Microbial transformations of selenium. Appl Environ Microbiol 33:31–37

    Google Scholar 

  • Dowdle PR, Oremland RS (1998) Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ Sci Technol 32:3749–3755

    Article  CAS  Google Scholar 

  • Dridge EJ, Watts CA, Jepson BJ, Line K, Santini JM, Richardson DJ, Butler CS (2007) Investigation of the redox centres of periplasmic selenate reductase from Thauera selenatis by EPR spectroscopy. Biochem J 408:19–28

    Article  CAS  Google Scholar 

  • Dridge EJ, Butler CS (2010) Thermostable properties of the periplasmic selenate reductase from Thauera selenatis. Biochimie 92:1268–1273

    Article  CAS  Google Scholar 

  • Dugan SR, Frankenberger WT Jr (2001) Factors affecting the volatilization of dimethylselenide by Enterobacter cloacae SLD1a-1. Soil Biol Biochem 32:1353–1358

    Article  Google Scholar 

  • Duran RS, Yates SR, Frankenberger WT Jr (2003) Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ Microbiol 5:287–295

    Article  Google Scholar 

  • Fernandez-Martinez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  CAS  Google Scholar 

  • Ganther HE (1968) Selenotrisulfides. Formation by reaction of thiols with selenious acid. Biochem 7:2898–2905

    Article  CAS  Google Scholar 

  • Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204

    Article  CAS  Google Scholar 

  • Garbisu C, Carlson D, Adamkiewicz M, Yee BC, Wong JH, Resto E, Leighton T, Buchanan BB (1999) Morphological and biochemical responses of Bacillus subtilis to selenite stress. BioFactors 10:311–319

    Article  CAS  Google Scholar 

  • Guzzo J, Dubow MS (2000) A novel selenite- and tellurite-inducible gene in Escherichia coli. Appl Environ Microbiol 66:4972–4978

    Article  CAS  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31

    Article  CAS  Google Scholar 

  • Herbel MJ, Blum JS, Borglin SE, Oremland RS (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20:587–602

    Google Scholar 

  • Hoffman DJ (2002) Role of selenium toxicity and oxidative stress in aquatic birds. Aquat Toxicol 57:11–26

    Article  CAS  Google Scholar 

  • Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenite by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314

    Article  CAS  Google Scholar 

  • Hunter WJ (2007) An Azospira oryzae (syn Dechlorosoma suillum) strain that reduces selenate and selenite to elemental red selenium. Curr Microbiol 54:376–381

    Article  CAS  Google Scholar 

  • Hunter WJ, Kuyendall LD (2007) Reduction of selenite to elemental red selenium by Rhizobium sp. Strain B1. Curr Microbiol 55:344–349

    Article  CAS  Google Scholar 

  • Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57:83–88

    Article  CAS  Google Scholar 

  • Hunter WJ, Manter (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. Strain CA5. Curr Microbiol 58:493–498

    Article  CAS  Google Scholar 

  • Hunter WJ (2014) Pseudomonas seleniipraecipitans proteins potentially involved in selenite reduction. Curr Microbiol 69:69–74

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2000) Trace elements in soil and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    CAS  Google Scholar 

  • Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimiltory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669

    Article  CAS  Google Scholar 

  • Kessi J (2006) Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus. Microbiology 15:731–743

    Article  CAS  Google Scholar 

  • Knight VV, Blakemore R (1998) Reduction of diverse electron acceptors by Aeromonas hydrophila. Arch Microbiol 169:239–248

    Article  CAS  Google Scholar 

  • Krafft T, Bowen A, Theis F, Macy JM (2000) Cloning and sequencing of the genes encoding the periplasmic-cytochrome b-containing selenate reductase of Thauera selenatis. DNA Sequation 10:365–377

    Article  CAS  Google Scholar 

  • Kramer GF, Ames BN (1988) Mechanisms of mutagenicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res 201:169–180

    Article  CAS  Google Scholar 

  • Kuroda M, Yamashita M, Miwa E, Imao K, Fujimoto N, Ono H, Nagano K, Sei K, Ike M (2011) Molecular cloning and characterization of the srdBCA operon, encoding the respiratory selenate reductase complex, form the selenate-reducing bacterium Bacillus selenatarsenatis SF-1. J Bacteriol 193:2141–2148

    Article  CAS  Google Scholar 

  • Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777

    Article  CAS  Google Scholar 

  • Lai CY, Wen LL, Shi LD, Zhao KK, Wang YQ, Yang X, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao HP (2016) Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor. Environ Sci Technol 50:10179–10186

    Article  CAS  Google Scholar 

  • Laishley EJ, Harrison GI, Bryant RD, Krouse HR (1980) Influence of selenium compounds on reduction of sulphur compounds and associated sulphur isotope fractions in Clostridium pasteurianum. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Australian Academy of Sciences, Canberra, Australia

    Google Scholar 

  • Leifson E (1939) New selenite selective enrichment medium for the isolation of typhoid and paratyphoid bacilli. Am J Hyg 24:423–432

    Google Scholar 

  • Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57:39–49

    Article  CAS  Google Scholar 

  • Lenz M, Kolvenbach B, Gygax B, Moes S, Corvinni PFX (2011) Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microb 77:4676–4680

    Article  CAS  Google Scholar 

  • Li D-B, Cheng Y-Y, Wu C, Li W-W, Li N, Yang Z-C, Tong Z-H, Yu H-Q (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4:3735

    Article  CAS  Google Scholar 

  • Losi ME, Frankenberger WT (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084

    CAS  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Ann Rev Microbiol 47:263–290

    Article  CAS  Google Scholar 

  • Lowe EC, Bydder S, Hartshorne RS, Tape HL, Dridge EJ, Debieux CM, Paszkiewicz K, Singleton I, Lewis RJ, Santini JM, Richardson DJ, Butler CS (2010) Quinol-cytochrome c oxidoreductase and cytochrome c4 mediate electron transfer during selenate respiration in Thauera selenatis. J Biol Chem 285:18433–18442

    Article  CAS  Google Scholar 

  • Luoma SN, Johns C, Fisher NS, Steinberg NA, Oremland RS, Reinfelder JR (1992) Determination of selenium bioavailability to a bivalve from particulate and solute pathways. Environ Sci Technol 26:485–491

    Article  CAS  Google Scholar 

  • Macy JM, Michel TA, Kirsch DG (1989) Selenate reduction by Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol Lett 61:195–198

    Article  CAS  Google Scholar 

  • Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E, Sly LI (1993) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43:135–142

    Article  CAS  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursoulle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 10:3968–3973

    Article  CAS  Google Scholar 

  • Mezes M, Balogh K (2009) Prooxidant mechanisms of selenium toxicity—a review. Acta Biologica Szegediensis 53, Suppl.1. http://www.sci.u-szeged.hu/ABS

  • Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  Google Scholar 

  • Nakagawa T, Lino T, Suzuki K-I, Harayama S (2006) Ferrimonas futtsuensis sp. nov. and Ferrimonas kyonanensis sp. nov. selenate-reducing bacteria belonging to the Gammaproteobacteria isolated from Tokyo Bay. Internat J Systematic Evol Microbiol 56:2639–2645

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015a) Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev 79:61–80

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015b) Selenium biomineralization for biotechnological applications. Trends Biotechnol 6:323–330

    Article  CAS  Google Scholar 

  • Narasingarao P, Haggblom MM (2007) Pelobacter seleniigenes sp. nov. a selenate-respiring bacterium. Int J Syst Evol Microbiol 57:1937–1942

    Article  CAS  Google Scholar 

  • Ni TW, Staicu LC, Nemeth R, Schwartz C, Crawford D, Seligman J, Hunter WJ, Pilon-Smits EAH, Ackerson CJ (2015) Progress toward clonable inorganic nanoparticles. Nanoscale 7:17320–17327

    CAS  Google Scholar 

  • Noblitt SD, Staicu LC, Ackerson CJ, Henry CS (2014) Sensitive, selective analysis of selenium oxoanions using microchip electrophoresis with contact conductivity detection. Anal Chem 86:8425–8432

    Article  CAS  Google Scholar 

  • Ohlendorf HM (1989) Bioaccumulation and effects of selenium in wildlife. In: Jacobs LW (ed) Selenium in agriculture and the environment. American Society of Agronomy, Inc. Soil Science Society of America, Inc. 5585, Madison, USA

    Google Scholar 

  • Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culberston CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343

    CAS  Google Scholar 

  • Oremland RS, Switzer Blum J, Culberston CW, Visscher PT, Miller LG, Dowdle P, Strohmaier FE (1994) Isolation, growth and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–3019

    CAS  Google Scholar 

  • Oremland RS, Blum JS, Bindi AB, Dowdle PR, Herbel M, Stolz JF (1999) Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Appl Environ Microbiol 65:4385–4392

    CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  Google Scholar 

  • Pearce CI, Coker VS, Charnock JM, Pattrick RAD, Mosselmans JFW, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:155603

    Article  CAS  Google Scholar 

  • Pittman MS, Robinson HC, Poole RK (2005) A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280:32254–32261

    Article  CAS  Google Scholar 

  • Presser TS, Ohlendorf HM (1987) Biogeochemical cycling of selenium in the San Joaquin Valley, California. Environ Manag 11:805–821

    Article  CAS  Google Scholar 

  • Rathgeber C, Yurkova N, Stackebrandt E, Beatty JT, Yurkov V (2002) Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 68:4613–4622

    Article  CAS  Google Scholar 

  • Rauschenbach I, Narasingarao P, Haggblom MM (2011) Desulfurispirillum indicum sp. nov. a selenate- and selenite-respiring bacterium isolated from an estuarine canal. Int J Syst Evol Microbiol 61:654–658

    Article  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  Google Scholar 

  • Rech SA, Macy JM (1992) The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J Bacteriol 174:7316–7320

    Article  CAS  Google Scholar 

  • Ridley H, Watts CA, Richardson DJ, Butler CS (2006) Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Appl Environ Microbiol 72:5173–5180

    Article  CAS  Google Scholar 

  • Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515

    Article  CAS  Google Scholar 

  • Sabaty M, Avazeri C, Pignol D, Vermeglio A (2001) Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microbiol 67:5122–5126

    Article  CAS  Google Scholar 

  • Sarathchandra SU, Watkinson JH (1981) Oxidation of elemental selenium to selenite by Bacillus megaterium. Science 211:600–601

    Article  CAS  Google Scholar 

  • Sarret G, Avoscan L, Carriere M, Collins R, Geoffroy N, Carrot F, Coves J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microbiol 71:2331–2337

    Article  CAS  Google Scholar 

  • Schlekat CE, Dowdle PR, Lee BG, Luoma SN, Oremland RS (2000) Bioavailability of particle-associated selenium on the bivalve Potamocorbila amuresis. Environ Sci Technol 34:4504–4510

    Article  CAS  Google Scholar 

  • Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130:1653–1656

    CAS  Google Scholar 

  • Schroder I, Rech S, Krafft T, Macy JM (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272:23765–23768

    Article  CAS  Google Scholar 

  • Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachare JM, Fredrickson JK (2009) The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep 1:220–227

    Article  CAS  Google Scholar 

  • Shrift A (1964) A selenium cycle in nature? Nature 201:1304–1305

    Article  CAS  Google Scholar 

  • Stadtman TC (1974) Selenium biochemistry. Science 183:915–922

    Article  CAS  Google Scholar 

  • Staicu LC, van Hullebusch ED, Oturan MA, Ackerson CJ, Lens PNL (2015a) Removal of colloidal biogenic selenium from wastewater. Chemosphere 125:130–138

    Article  CAS  Google Scholar 

  • Staicu LC, Ackerson CJ, Cornelis P et al (2015b) Pseudomonas moraviensis subsp. stanleyae: a bacterial endophyte capable of efficient selenite reduction to elemental selenium under aerobic conditions. J Appl Microb 119:400–410

    Article  CAS  Google Scholar 

  • Staicu LC, van Hullebusch ED, Lens PNL, Pilon-Smits EAH, Oturan MA (2015c) Electrocoagulation of colloidal biogenic selenium. Environ Sci Pollut Res Int 22:3127–3137

    Article  CAS  Google Scholar 

  • Staicu LC, Morin-Crini N, Crini G (2017) Desulfurization: Critical step towards enhanced selenium removal from industrial effluents. Chemosphere 117:111–119

    Article  CAS  Google Scholar 

  • Stolz JF, Ellis DJ, Blum JS, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. Int J Syst Bacteriol 49:1177–1180

    Article  CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  CAS  Google Scholar 

  • Sura-de Jong M, Reynolds J, Richterova M et al (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium tolerance and growth promoting properties. Front Plant Sci 6:113

    Article  Google Scholar 

  • Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov. and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  CAS  Google Scholar 

  • Switzer Blum J, Stolz JF, Oren A, Oremland RS (2001) Selenihalanaerobacter shriftii gen. nov. sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 75:208–219

    Article  Google Scholar 

  • Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 34:886–907

    Article  CAS  Google Scholar 

  • Taratus EM, Eubanks SG, DiChristina TJ (2000) Design and application of a rapid screening technique for isolation of selenite reduction-deficient mutants of Shewanella putrefaciens. Microbiol Res 155:79–85

    Article  CAS  Google Scholar 

  • Thorsen M, Jacobson T, Vooijs R, Navarrete C, Bliek T, Schat H, Tamas MJ (2012) Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast. Mol Microbiol 84:1177–1188

    Article  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG (1992) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38:1328–1333

    Article  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336

    Article  CAS  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11:223–227

    Article  CAS  Google Scholar 

  • von Wintzingerode F, Gobel UB, Siddiqui RA, Rosick U, Schumann P, Fruhling A, Rohde M, Pukall R, Stackebrandt E (2001) Salana multivorans gen. nov. sp. nov., a novel actinobacterium isolated from an anaerobic bioreactor and capable of selenate reduction. Int J Syst Evol Microbiol 51:1653–1661

    Article  Google Scholar 

  • Watts CA, Ridley H, Condie KL, Leaver JT, Richardson DJ, Butler CS (2003) Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol Lett 228:273–279

    Article  CAS  Google Scholar 

  • Wilson LG, Bandurski R (1958) Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. J Biol Chem 233:975–981

    CAS  Google Scholar 

  • Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (2011) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46:571–579

    Article  CAS  Google Scholar 

  • Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi DY (2007) Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol 73:1914–1920

    Article  CAS  Google Scholar 

  • Youssef GA, El-Aassar SA, Berekaa M, El-Shaer M, Stolz J (2009) Arsenate and selenite reduction by some facultative bacteria in the Nile Delta. Am Eurasian J Agric Environ Sci 5:847–855

    CAS  Google Scholar 

  • Zahir ZA, Zhang Y, Frankenberger WT Jr (2003) Fate of selenate metabolized by Enterobacter taylorae isolated from rice straw. J Agric Food Chem 51:3609–3613

    Article  CAS  Google Scholar 

  • Zannoni D, Borsetti F, Harrison JJ, Turner RJ (2008) The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol 53:1–72

    CAS  Google Scholar 

  • Zehr JP, Oremland RS (1987) Reduction of selenate to selenide by sulfate-respiring bacteria: experiments with cell suspensions and estuarine sediments. Appl Environ Chem 53:1365–1369

    CAS  Google Scholar 

  • Zhao R, Xiang N, Domann FE, Zhong W (2006) Expression of p53 enhances selenite-induced superoxide production and apoptosis in human prostate cancer cells. Cancer Res 66:2296–2304

    Article  CAS  Google Scholar 

  • Zhang Y, Siddique T, Wang J, Frankenberger WT Jr (2004) Selenate reduction in river water by Citrobacter freundii isolated from a selenium-contaminated sediment. J Agric Food Chem 52:1594–1600

    Article  CAS  Google Scholar 

  • Zhang Y, Okeke BC, Frankenberger WT (2008) Bacterial reduction of selenite to elemental selenium utilizing molasses as a carbon source. Bioresour Technol 99:1267–1273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian C. Staicu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Staicu, L.C., Barton, L.L. (2017). Bacterial Metabolism of Selenium—For Survival or Profit. In: van Hullebusch, E. (eds) Bioremediation of Selenium Contaminated Wastewater. Springer, Cham. https://doi.org/10.1007/978-3-319-57831-6_1

Download citation

Publish with us

Policies and ethics