Skip to main content

Fully Adaptive and Integrated Numerical Methods for the Simulation and Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models

  • Chapter
  • First Online:
Transport Processes at Fluidic Interfaces

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 1547 Accesses

Abstract

The present work is concerned with the simulation and optimal control of two-phase flows. We provide stable time discretization schemes for the simulation based on both, smooth and non-smooth free energy densities, which we combine with a practical, reliable and efficient adaptive mesh refinement concept for the spatial variables. Furthermore, we consider optimal control problems for two-phase flows and, among other things, derive first order optimality conditions. In the presence of smooth free energies we encounter classical Karush-Kuhn-Tucker (KKT) conditions, while in the case of non-smooth free energies we can prove C(larke)-stationarity. Moreover, we propose a dual weighted residual concept for spatial mesh adaptivity which is based on the newly derived stationarity conditions. We also address future research directions, including closed-loop control concepts and model order reduction techniques for simulation and control of variable density multiphase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abels, H., Breit, D.: Weak solutions for a non-Newtonian diffuse interface model with different densities. arXiv:1509.05663v1 (2015). http://arxiv.org/abs/1509.05663

  2. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013(40) (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abels, H., Depner, D., Garcke, H.: On an incompressible Navier–Stokes/Cahn–Hilliard system with degenerate mobility. Ann. Inst. H. Poincaré (C) Non Linear Anal. 30(6), 1175–1190 (2013)

    Google Scholar 

  5. Adams, R.A., Fournier, J.H.F.: Sobolev spaces. In: Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  6. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  7. Aki, G.L., Dreyer, W., Giesselmann, J., Kraus, C.: A quasi-incompressible diffuse interface model with phase transition. Math. Models Methods Appl. Sci. 24(5), 827–861 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aland, S.: Time integration for diffuse interface models for two-phase flow. J. Comput. Phys. 262, 58–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 69, 747–761 (2012)

    Article  MathSciNet  Google Scholar 

  10. Alla, A., Falcone, E.: An adaptive pod approximation method for the control of advection-diffusion equations (2013). Arxiv: 1302.4072

    Google Scholar 

  11. Baňas, L., Nürnberg, R.: Adaptive finite element methods for Cahn–Hilliard equations. J. Comput. Appl. Math. 218, 2–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baňas, L., Nürnberg, R.: A posteriori estimates for the Cahn–Hilliard equation. Math. Modell. Numer. Anal. 43(5), 1003–1026 (2009)

    Article  MATH  Google Scholar 

  13. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2003). doi:10.1007/978-3-0348-7605-6. http://dx.doi.org/10.1007/978-3-0348-7605-6

    Book  MATH  Google Scholar 

  14. Barbu, V.: Optimal control of variational inequalities. In: Research Notes in Mathematics, vol. 100. Pitman (Advanced Publishing Program), Boston (1984)

    Google Scholar 

  15. Barbu, V.: Analysis and control of nonlinear infinite-dimensional systems. In: Mathematics in Science and Engineering, vol. 190. Academic, Boston (1993)

    Google Scholar 

  16. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000) (electronic). doi:10.1137/S0363012999351097, http://dx.doi.org/10.1137/S0363012999351097

  17. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimization problems. In: Numerical Analysis 1999 (Dundee). Chapman & Hall/CRC Research Notes in Mathematics, vol. 420, pp. 21–42. Chapman & Hall/CRC, Boca Raton (2000)

    Google Scholar 

  18. Benedix, O., Vexler, B.: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44(1), 3–25 (2009). doi:10.1007/s10589-008-9200-y, http://dx.doi.org/10.1007/s10589-008-9200-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bergounioux, M.: Optimal control of an obstacle problem. Appl. Math. Optim. 36(2), 147–172 (1997). doi:10.1007/s002459900058, http://dx.doi.org/10.1007/s002459900058

    Article  MathSciNet  Google Scholar 

  21. Bergounioux, M., Dietrich, H.: Optimal control of problems governed by obstacle type variational inequalities: a dual regularization-penalization approach. J. Convex Anal. 5(2), 329–351 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Blank, L., Butz, M., Garcke, H.: Solving the Cahn–Hilliard variational inequality with a semi-smooth Newton method. ESAIM Control Optim. Calc. Var. 17(4), 931–954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Blank, L., Farshbaf-Shaker, M., Garcke, H., Rupprecht, C., Styles, V.: Multi-material phase field approach to structural topology optimization. In: Leugering, G., Benner, P., Engell, S., Griewank, A., Harbrecht, H., Hinze, M., Rannacher, R., Ulbrich, S. (eds.) Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, vol. 165. Birkhäuser Verlag, Basel (2015)

    Google Scholar 

  24. Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part I: mathematical analysis. Eur. J. Appl. Math. 2, 233–280 (1991)

    MATH  Google Scholar 

  25. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31(1), 41–68 (2002)

    Article  MATH  Google Scholar 

  26. Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2010)

    Article  MathSciNet  Google Scholar 

  27. Bramble, J., Pasciak, J., Steinbach, O.: On the Stability of the L 2 projection in H 1(Ω). Math. Comput. 71(237), 147–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, Berlin (2008)

    Google Scholar 

  29. Brett, C., Elliott, C.M., Hintermüller, M, Löbhard, C.: Mesh adaptivity in optimal control of elliptic variational inequalities with point-tracking of the state. Interfaces Free Bound. 17(1), 21–53 (2015). doi:10.4171/IFB/332, http://dx.doi.org/10.4171/IFB/332

    Article  MathSciNet  MATH  Google Scholar 

  30. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Google Scholar 

  31. Carstensen, C.: Quasi-interpolation and a-posteriori error analysis in finite element methods. Math. Modell. Numer. Anal. 33(6), 1187–1202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen, L.: iFEM: an innovative finite element method package in Matlab. Available at: ifem.wordpress.com (2008)

    Google Scholar 

  33. Choi, H., Temam, R., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Constantin, P., Foias, C.: Navier-Stokes-Equations. The University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  35. Davis, T.A.: Algorithm 832: Umfpack v4.3 - an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

    Google Scholar 

  36. Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of elliptic control problems with constraints on the gradient. Numer. Math. 111(3), 335–350 (2009). doi:10.1007/s00211-008-0185-3, http://dx.doi.org/10.1007/s00211-008-0185-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226(2), 2078–2095 (2007)

    Article  MATH  Google Scholar 

  38. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28, English edn. Society for Industrial and Applied Mathematics, Philadelphia (1999). doi:10.1137/1.9781611971088, http://dx.doi.org/10.1137/1.9781611971088. Translated from the French

  39. Elliott, C., Stinner, B., Styles, V., Welford, R.: Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal. 31(3), 786–812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Friedman, A.: Optimal control for variational inequalities. SIAM J. Control Optim. 24(3), 439–451 (1986). doi:10.1137/0324025, http://dx.doi.org/10.1137/0324025

    Article  MathSciNet  MATH  Google Scholar 

  42. Garcke, H., Lam, K.F., Stinner, B.: Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci. 12(8), 1475–1522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Garcke, H., Hecht, C., Hinze, M., Kahle, C.: Numerical approximation of phase field based shape and topology optimization for fluids. SIAM J. Sci. Comput. 37(4), 1846–1871 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Garcke, H., Hinze, H., Kahle, C.: Optimal Control of time-discrete two-phase flow driven by a diffuse-interface model (2016). arXiv:1612.02283

    Google Scholar 

  45. Garcke, H., Hinze, M., Kahle, C.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl. Numer. Math. 99, 151–171 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics. Theory and Algorithms, vol. 5. Springer, Berlin (1986). doi:10.1007/978-3-642-61623-5, http://dx.doi.org/10.1007/978-3-642-61623-5

  47. Gross, S., Reusken, A.: Numerical Methods for Two-Phase Incompressible Flows. Springer Series in Computational Mathematics, vol. 40. Springer, Berlin (2011)

    Google Scholar 

  48. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51(6), 3036–3061 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame indifferent diffuse interface model. J. Comput. Phys. 257(A), 708–725 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Grün, G., Guillén-Gonzáles, F., Metzger, S.: On fully decoupled convergent schemes for diffuse interface models for two-phase flow with general mass densities. Commun. Comput. Phys. 19(5), 1473–1502 (2016)

    Article  MathSciNet  Google Scholar 

  51. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control. Communications and Control Engineering. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  52. GSL - GNU Scientific Library. http://www.gnu.org/software/gsl/

  53. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Guillén-Gonzáles, F., Tierra, G.: Splitting schemes for a Navier–Stokes –Cahn–Hilliard model for two fluids with different densities. J. Comput. Math. 32(6), 643–664 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Guillén-González, F., Tierra, G.: Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22(2), 269–289 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Günther, A., Hinze, M.: Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls. Comput. Optim. Appl. 49(3), 549–566 (2011). doi:10.1007/s10589-009-9308-8, http://dx.doi.org/10.1007/s10589-009-9308-8

    Article  MathSciNet  MATH  Google Scholar 

  57. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008). doi:10.1137/070683891, http://dx.doi.org/10.1137/070683891

    Article  MathSciNet  MATH  Google Scholar 

  59. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations. SIAM J. Control Optim. 48(8), 5468–5487 (2010). doi:10.1137/090761823, http://dx.doi.org/10.1137/090761823

    Article  MathSciNet  MATH  Google Scholar 

  60. Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009). doi:10.1137/080720681, http://dx.doi.org/10.1137/080720681

    Article  MathSciNet  MATH  Google Scholar 

  61. Hintermüller, M., Surowiec, T.: A bundle-free implicit programming approach for a class of MPECs in function space. Preprint (2012)

    Google Scholar 

  62. Hintermüller, M., Wegner, D.: Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system. SIAM J. Control Optim. 52(1), 747–772 (2014). doi:10.1137/120865628, http://dx.doi.org/10.1137/120865628

    Article  MathSciNet  MATH  Google Scholar 

  63. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003)

    Article  MATH  Google Scholar 

  64. Hintermüller, M., Hoppe, R.H., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM Control Optim. Calc. Var. 14(3), 540–560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Hintermüller, M., Hinze, M., Tber, M.H.: An adaptive finite element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem. Optim. Methods Softw. 25(4–5), 777–811 (2011). doi:10.1080/10556788.2010.549230

    Article  MathSciNet  MATH  Google Scholar 

  66. Hintermüller, M., Hinze, M., Hoppe, R.H.: Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state-constraints. J. Comput. Math 30(2), 101–123 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Hintermüller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau–Yosida-based solver for a coupled Cahn–Hilliard/Navier–Stokes system. J. Comput. Phys. 235, 810–827 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Hintermüller, M., Hoppe, R.H.W., Löbhard, C.: Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM Control Optim. Calc. Var. 20(2), 524–546 (2014). doi:10.1051/cocv/2013074, http://dx.doi.org/10.1051/cocv/2013074

    Article  MathSciNet  MATH  Google Scholar 

  69. Hintermüller, M., Mordukhovich, B.S., Surowiec, T.M.: Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146(1–2, Ser. A), 555–582 (2014). doi:10.1007/s10107-013-0704-6, http://dx.doi.org/10.1007/s10107-013-0704-6

  70. Hintermüller, M., Schiela, A., Wollner, W.: The length of the primal-dual path in Moreau-Yosida-based path-following methods for state constrained optimal control. SIAM J. Optim. 24(1), 108–126 (2014). doi:10.1137/120866762, http://dx.doi.org/10.1137/120866762

    Article  MathSciNet  MATH  Google Scholar 

  71. Hintermüller, M., Keil, T., Wegner, D.: Optimal control of a semidiscrete Cahn-Hilliard-Navier-stokes system with non-matched fluid densities. arXiv preprint arXiv:1506.03591 (2015)

    Google Scholar 

  72. Hintermüller, M., Hinze, H., Kahle, C., Keil, T.: A goal-oriented dual-weighted adaptive finite elements approach for the optimal control of a Cahn-Hilliard-Navier-Stokes system. Hamburger Beiträge zur Angewandten Mathematik 2016-29 (2016)

    Google Scholar 

  73. Hinze, M.: Instantaneous closed loop control of the Navier–Stokes system. SIAM J. Control Optim. 44(2), 564–583 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  75. Hinze, M., Kahle, C.: A nonlinear model predictive concept for the control of two-phase flows governed by the Cahn–Hilliard Navier–Stokes system. In: System Modeling and Optimization, vol. 391. IFIP Advances in Information and Communication Technology (2013)

    Google Scholar 

  76. Hinze, M., Kahle, C.: Model predictive control of variable density multiphase flows governed by diffuse interface models. In: Proceedings of the first IFAC Workshop on Control of Systems Modeled by Partial Differential Equations, vol. 1, pp. 127–132 (2013)

    Google Scholar 

  77. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 261–306. Springer, Berlin (2005)

    Google Scholar 

  78. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977)

    Article  Google Scholar 

  79. Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259–1288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  80. Ito, K., Kunisch, K.: Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41(3), 343–364 (2000). doi:10.1007/s002459911017, http://dx.doi.org/10.1007/s002459911017

    Article  MathSciNet  MATH  Google Scholar 

  81. Jarušek, J., Krbec, M., Rao, M., Sokołowski, J.: Conical differentiability for evolution variational inequalities. J. Differ. Equ. 193(1), 131–146 (2003). doi:10.1016/S0022-0396(03)00136-0, http://dx.doi.org/10.1016/S0022-0396(03)00136-0

    Article  MathSciNet  MATH  Google Scholar 

  82. Kahle, C.: An L bound for the Cahn–Hilliard equation with relaxed non-smooth free energy density. arXiv:1511.02618 (2015)

    Google Scholar 

  83. Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212, 288–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  84. Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady state Navier–Stokes equations. SIAM J. Sci. Comput. 24(1), 237–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  85. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10(1), 15–43 (2008). http://www.ems-ph.org/journals/show_issue.php?issn=1463-9963&vol=10&iss=1

    Article  MathSciNet  Google Scholar 

  86. Kim, J.: A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204(2), 784–804 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  87. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comp. Phys. 193, 511–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  88. Krumbiegel, K., Rösch, A.: A virtual control concept for state constrained optimal control problems. Comput. Optim. Appl. 43(2), 213–233 (2009). doi:10.1007/s10589-007-9130-0, http://dx.doi.org/10.1007/s10589-007-9130-0

    Article  MathSciNet  MATH  Google Scholar 

  89. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90(1), 117–148 (2001). doi:10.1007/s002110100282, http://dx.doi.org/10.1007/s002110100282

    Article  MathSciNet  MATH  Google Scholar 

  90. Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002). doi:10.1137/S0363012901389342, http://dx.doi.org/10.1137/S0363012901389342

    Article  MathSciNet  MATH  Google Scholar 

  91. Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2002) (2001). doi:10.1023/A:1014239012739, http://dx.doi.org/10.1023/A:1014239012739. A posteriori error estimation and adaptive computational methods

  92. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. A 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  93. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996). doi:10.1017/CBO9780511983658, http://dx.doi.org/10.1017/CBO9780511983658

    MATH  Google Scholar 

  94. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)

    Article  MATH  Google Scholar 

  95. Mignot, F., Puel, J.P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984). doi:10.1137/0322028, http://dx.doi.org/10.1137/0322028

    Article  MathSciNet  MATH  Google Scholar 

  96. Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys. Rev. A 38(1), 434–463 (1988)

    Google Scholar 

  97. Otto, F., Seis, C., Slepčev, D.: Crossover of the coarsening rates in demixing of binary viscous liquids. Commun. Math. Sci. 11(2), 441–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  98. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Theory, Applications and Numerical Results. Nonconvex Optimization and Its Applications, vol. 28. Kluwer Academic Publishers, Dordrecht (1998). doi:10.1007/978-1-4757-2825-5, http://dx.doi.org/10.1007/978-1-4757-2825-5

  99. Repin, S.: A Posteriori Estimates for Partial Differential Equations. Radon Series on Computational and Applied Mathematics, vol. 4. Walter de Gruyter GmbH & Co. KG, Berlin (2008). doi:10.1515/9783110203042, http://dx.doi.org/10.1515/9783110203042

  100. Rösch, A., Wachsmuth, D.: A-posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120(4), 733–762 (2012). doi:10.1007/s00211-011-0422-z, http://dx.doi.org/10.1007/s00211-011-0422-z

    Article  MathSciNet  MATH  Google Scholar 

  101. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000). doi:10.1287/moor.25.1.1.15213, http://dx.doi.org/10.1287/moor.25.1.1.15213

    Article  MathSciNet  MATH  Google Scholar 

  102. Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005)

    Google Scholar 

  103. Schneider, R., Wachsmuth, G.: A posteriori error estimation for control-constrained, linear-quadratic optimal control problems. SIAM J. Numer. Anal. 54(2), 1169–1192 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  104. Sethian, J.A.: Theory, algorithms, and applications of level set methods for propagating interfaces. Acta Numer. 5, 309–395 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  105. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3), 1159–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  106. Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems. Lecture Notes in Mathematics, vol. 1459. Springer, Berlin (1990). doi:10.1007/BFb0085564, http://dx.doi.org/10.1007/BFb0085564

  107. Verfürth, R.: A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations. Calcolo 47(3), 149–167 (2010). doi:10.1007/s10092-010-0018-5, http://dx.doi.org/10.1007/s10092-010-0018-5

    Article  MathSciNet  MATH  Google Scholar 

  108. Vexler, B., Wollner, W.: Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47(1), 509–534 (2008). doi:10.1137/070683416, http://dx.doi.org/10.1137/070683416

    Article  MathSciNet  MATH  Google Scholar 

  109. Wachsmuth, G.: Towards M-stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Control Optim. 54(2), 964–986 (2016). doi:10.1137/140980582, http://dx.doi.org/10.1137/140980582

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the DFG through the priority programm 1506 “Transport processes at fluidic interfaces” under the grants HI 689_7-1 and HI 1466/2-1. This research was further supported by the Research Center MATHEON through project C-SE5 and D-OT1 funded by the Einstein Center for Mathematics Berlin. In addition, this research was partly supported by the Berlin Mathematical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hintermüller, M., Hinze, M., Kahle, C., Keil, T. (2017). Fully Adaptive and Integrated Numerical Methods for the Simulation and Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_13

Download citation

Publish with us

Policies and ethics