Skip to main content

Plant VDAC Permeability: Molecular Basis and Role in Oxidative Stress

  • Chapter
  • First Online:
Molecular Basis for Mitochondrial Signaling

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The mitochondrial voltage-dependent anion-selective channel (VDAC) is highly abundant in the mitochondrial outer membrane. It is permeable to molecules with a size up to about 5 kDa and is the main pathway for the exchange of metabolites and ions between the mitochondrial intermembrane space and the cytosol. Experimental studies performed for plant VDAC have shown that the channel displays properties reported for VDACs of other eukaryotic organisms. Firstly, it transports compounds as diverse as inorganic ions (e.g., K+ and Cl), adenylates (e.g., ATP and AMP), and large macromolecules (tRNA and DNA). Secondly, despite its wide pore, the channel displays selectivity toward these compounds, i.e., it distinguishes between K+ and Cl but also between ATP and AMP. The question of how VDAC can selectively transport these different compounds is addressed in this chapter based on data obtained for plant VDAC. It is well known that all organisms have at least one canonical VDAC isoform that shares similar electrophysiological properties and secondary structure with cognate VDAC of other organisms. For instance, this is the case of the mammalian VDAC1, the yeast Saccharomyces cerevisiae VDAC1 and the PcVDAC purified from the bean Phaseolus coccineus seeds. Consequently, Brownian dynamic simulations of monatomic ion permeation through the experimental three-dimensional structure of the mammalian VDAC1 and the PcVDAC modeled structure predict fairly well conductance and selectivity of both proteins. In addition, the data of molecular simulation studies performed on the mammalian VDAC1 agree with the experimental data obtained for PcVDAC, which suggests a similar permeation process for these VDAC proteins. Accordingly, both the experimental and theoretical studies indicate that the selectivity for inorganic ions is a consequence of the excess of positive charges and their distribution inside the pore and the absence of defined pathways for the permeation. In contrast, the permeation of metabolites involves a major binding site located at the N-terminal helix which folded into the pore lumen and occurs through a preferential pathway. The key residues forming the binding site are conserved in the PcVDAC pointing to the conserved permeation process. The process might be affected by VDAC interaction with other proteins. For example, it is suggested that plant VDAC is involved in the oxidative stress response which includes cytosolic hexokinase and thioredoxin binding to VDAC. This in turn may influence the exchange of molecules between the mitochondria and the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Within the chapter, we will follow the proposition of the Nomenclature Committee on Cell Death (Galluzzi et al. 2015).

  2. 2.

    The affinity for glucose is one to three orders of magnitude higher than that of other sugars.

Abbreviations

BiFC:

Bimolecular fluorescence complementation

HK and HXK:

Hexokinase

Trx:

Thioredoxin

VDAC:

Voltage-dependent anion channel

References

  • Abrecht H, Goormaghtigh E, Ruysschaert JM, Homble F (2000a) Structure and orientation of two voltage-dependent anion-selective channel isoforms – an attenuated total reflection Fourier-transform infrared spectroscopy study. J Biol Chem 275:40992–40999. doi:10.1074/jbc.M006437200

    Article  Google Scholar 

  • Abrecht H, Wattiez R, Ruysschaert JM, Homble F (2000b) Purification and characterization of two voltage-dependent anion channel isoforms from plant seeds. Plant Physiol 124:1181–1190. doi:10.1104/pp.124.3.1181

    Article  Google Scholar 

  • Al Bitar F, Roosens N, Smeyers M, Vauterin M, Van Boxtel J, Jacobs M, Homblé F (2003) Sequence analysis, transcriptional and posttranscriptional regulation of the rice vdac family. Biochim Biophys Acta Gene Struct Expr 1625:43–51. doi:10.1016/S0167-4781(02)00590-0

    Article  Google Scholar 

  • Alcántar-Aguirre FC, Chagolla A, Tiessen A, Délano JP, de la Vara LE (2013) ATP produced by oxidative phosphorylation is channeled toward hexokinase bound to mitochondrial porin (VDAC) in beetroots (Beta vulgaris). Planta 237:1571–1583. doi:10.1007/s00425-013-1866-4

    Article  Google Scholar 

  • Aljamal JA, Genchi G, De Pinto V, Stefanizzi L, De Santis A, Benz R, Palmieri F (1993) Purification and characterization of porin from corn (Zea mays L.) mitochondria. Plant Physiol 102:615–621

    Article  Google Scholar 

  • Araújo WL, Nunes-Nesi A, Fernie AR (2014) On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. Photosynth Res 119:141–156. doi:10.1007/s11120-013-9807-4

    Article  Google Scholar 

  • Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2004) In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem J 377:347–355. doi:10.1042/bj20031465

    Article  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555. doi:10.1038/ncb1575

    Article  Google Scholar 

  • Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta Mol basis Dis 1762:1051–1067. doi:10.1016/j.bbadis.2006.03.008

    Article  Google Scholar 

  • Bauwe H, Hagemann M, Kern R, Timm S (2012) Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol 15:269–275. doi: 10.1016/j.pbi.2012.01.008

  • Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. ProcNatlAcadSciUSA 105:15370–15375. doi:10.1073/pnas.0808115105

    Article  ADS  Google Scholar 

  • Blachly-Dyson E, Peng S, Colombini M, Forte M (1990) Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications. Science (80-) 247:1233–1236. doi:10.1126/science.1690454

    Article  ADS  Google Scholar 

  • Blumenthal A, Kahn K, Beja O, Galun E, Colombini M, Breiman A (1993) Purification and characterization of the voltage-dependent anion-selective channel protein from wheat mitochondrial membranes. Plant Physiol 101:579–587. doi:10.1104/pp.101.2.579

    Article  Google Scholar 

  • Budzińska M, Gałgańska H, Karachitos A, Wojtkowska M, Kmita H (2009) The TOM complex is involved in the release of superoxide anion from mitochondria. J Bioenerg Biomembr 41:361–367. doi:10.1007/s10863-009-9231-9

    Article  Google Scholar 

  • Camacho-Pereira J, Meyer LE, Machado LB, Oliveira MF, Galina A (2009) Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiol 149:1099–1110. doi:10.1104/pp.108.129247

    Article  Google Scholar 

  • Chen H, Gao W, Yang Y, Guo S, Wang H, Wang W, Zhang S, Zhou Q, Xu H, Yao J, Tian Z, Li B, Cao W, Zhang Z, Tian Y (2014) Inhibition of VDAC1 prevents Ca2+-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages. Apoptosis 19:1712–1726. doi:10.1007/s10495-014-1045-5

    Article  Google Scholar 

  • Choudhary OP, Paz A, Adelman JL, Colletier J-P, Abramson J, Grabe M (2014) Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1. Nat Struct Mol Biol 21:626–632. doi:10.1038/nsmb.2841

    Article  Google Scholar 

  • Clausen C, Ilkavets I, Thomson R, Philippar K, Vojta A, Mohlmann T, Neuhaus E, Fulgosi H, Soll J (2004) Intracellular localization of VDAC proteins in plants. Planta 220:30–37

    Article  Google Scholar 

  • Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111:103–111. doi:10.1007/BF01871775

    Article  Google Scholar 

  • Colombini M (2016) The VDAC channel: molecular basis for selectivity. Biochim Biophys Acta, Mol Cell Res 1863:2498–2502. doi:10.1016/j.bbamcr.2016.01.019

    Article  Google Scholar 

  • Del Río LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2008) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81. doi:10.1002/tbmb.718540875

    Article  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44:483–493. doi:10.1016/j.plaphy.2006.08.008

    Article  Google Scholar 

  • Dutilleul C, Driscoll S, Cornic G, De Paepe R, Foyer CH, Noctor G (2003) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol 131:264–275. doi:10.1104/pp.011155

    Article  Google Scholar 

  • Fischer K, Weber A, Brink S, Arbinger B, Schunemann D, Borchert S, Heldt HW, Popp B, Benz R, Link TA, Eckerskorn C, Flugge UI (1994) Porins from plants. Molecular cloning and functional characterization of two new members of the porin family. J Biol Chem 269:25754–25760

    Google Scholar 

  • Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62:1467–1482. doi:10.1093/jxb/erq453

    Article  Google Scholar 

  • Galganska H, Karachitos A, Wojtkowska M, Stobienia O, Budzinska M, Kmita H (2010) Communication between mitochondria and nucleus: putative role for VDAC in reduction/oxidation mechanism. Biochim Biophys Acta Bioenerg 1797:1276–1280. doi:10.1016/j.bbabio.2010.02.004

    Article  Google Scholar 

  • Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin K-M, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon M-L, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine J-C, Martin SJ, Martinou J-C, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon H-U, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73. doi:10.1038/cdd.2014.137

    Article  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant-Microbe Interact 19:711–724. doi:10.1094/MPMI-19-0711

    Article  Google Scholar 

  • Godbole A, Varghese J, Sarin A, Mathew MK (2003) VDAC is a conserved element of death pathways in plant and animal systems. Biochim Biophys Acta-Mol Cell Res 1642:87–96

    Article  Google Scholar 

  • Godbole A, Dubey AK, Reddy PS, Udayakumar M, Mathew MK (2013) Mitochondrial VDAC and hexokinase together modulate plant programmed cell death. Protoplasma 250:875–884. doi:10.1007/s00709-012-0470-y

    Article  Google Scholar 

  • Granot D (2007) Role of tomato hexose kinases. Funct Plant Biol 34:564–570

    Article  Google Scholar 

  • Granot D, Kelly G, Stein O, David-Schwartz R (2014) Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot 65:809–819. doi:10.1093/jxb/ert400

    Article  Google Scholar 

  • Gutiérrez-Aguilar M, Douglas DL, Gibson AK, Domeier TL, Molkentin JD, Baines CP (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J Mol Cell Cardiol 72:316–325. doi:10.1016/j.yjmcc.2014.04.008

    Article  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563. doi:10.1074/jbc.M210269200

    Article  Google Scholar 

  • Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16:241–256. doi:10.1105/tpc.016055

    Article  Google Scholar 

  • Heins L, Mentzel H, Schmid A, Benz R, Schmitz UK (1994) Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J Biol Chem 269:26402–26410

    Google Scholar 

  • Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science (80–) 321:1206–1210. doi:10.1126/science.1161302

    Article  ADS  Google Scholar 

  • Hiller S, Abramson J, Mannella C, Wagner G, Zeth K (2010) The 3D structures of VDAC represent a native conformation. Trends Biochem 35:514–521

    Article  Google Scholar 

  • Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157:271–279. doi:10.1007/s002329900235

    Article  Google Scholar 

  • Hölscher C, Meyer T, von Schaewen A (2014) Dual-targeting of arabidopsis 6-phosphogluconolactonase 3 (PGL3) to chloroplasts and peroxisomes involves interaction with Trx m2 in the cytosol. Mol Plant 7:252–255. doi:10.1093/mp/sst126

    Article  Google Scholar 

  • Homblé F, Krammer E-M, Prévost M (2012) Plant VDAC: facts and speculations. Biochim Biophys Acta Biomembr 1818:1486–1501. doi:10.1016/j.bbamem.2011.11.028

    Article  Google Scholar 

  • Huang S, Van Aken O, Schwarzländer M, Belt K, Millar AH (2016) Roles of mitochondrial reactive oxygen species in cellular signalling and stress response in plants. Plant Physiol 171:1551–1559. doi:10.1104/pp.16.00166

    Article  Google Scholar 

  • Imai K, Fujita N, Gromiha MM, Horton P (2011) Eukaryote-wide sequence analysis of mitochondrial beta-barrel outer membrane proteins. BMC Genom 12:79. doi:10.1186/1471-2164-12-79

    Article  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679. doi:10.1105/tpc.6.11.1665

    Article  Google Scholar 

  • Jores T, Klinger A, Groß LE, Kawano S, Flinner N, Duchardt-Ferner E, Wöhnert J, Kalbacher H, Endo T, Schleiff E, Rapaport D (2016) Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat Commun 7:12036. doi:10.1038/ncomms12036

    Article  ADS  Google Scholar 

  • Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc Natl Acad Sci 98:12295–12300. doi:10.1073/pnas.211423998

    Article  ADS  Google Scholar 

  • Kim M, Lim JH, Ahn CS, Park K, Kim GT, Kim WT, Pai HS (2006) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18:2341–2355

    Article  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465. doi:10.1038/nature02229

    Article  ADS  Google Scholar 

  • Komarov AG, Deng DF, Craigen WJ, Colombini M (2005) New insights into the mechanism of permeation through large channels. Biophys J 89:3950–3959

    Article  Google Scholar 

  • Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22:1245–1254

    Article  Google Scholar 

  • Krammer E-M, Homblé F, Prévost M (2011) Concentration dependent ion selectivity in VDAC: a molecular dynamics simulation study. PLoS One 6:e27994. doi:10.1371/journal.pone.0027994

    Article  ADS  Google Scholar 

  • Krammer E-M, Homblé F, Prévost M (2013) Molecular origin of VDAC selectivity towards inorganic ions: a combined molecular and Brownian dynamics study. Biochim Biophys Acta Biomembr 1828:1284–1292. doi:10.1016/j.bbamem.2012.12.018

    Article  Google Scholar 

  • Krammer E-M, Saidani H, Prévost M, Homblé F (2014) Origin of ion selectivity in Phaseolus coccineus mitochondrial VDAC. Mitochondrion 19:206–213. doi:10.1016/j.mito.2014.04.003

    Article  Google Scholar 

  • Krammer E-M, Vu GT, Homblé F, Prévost M (2015) Dual mechanism of ion permeation through VDAC revealed with inorganic phosphate ions and phosphate metabolites. PLoS One 10:e0121746. doi:10.1371/journal.pone.0121746

    Article  Google Scholar 

  • Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P (2006) Properties of the permeability transition in VDAC1−/− mitochondria. Biochim Biophys Acta Bioenerg 1757:590–595. doi:10.1016/j.bbabio.2006.02.007

    Article  Google Scholar 

  • Kusano T, Tateda C, Berberich T, Takahashi Y (2009) Voltage-dependent anion channels: their roles in plant defense and cell death. Plant Cell Rep 28:1301–1308. doi:10.1007/s00299-009-0741-z

    Article  Google Scholar 

  • Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M, Kruger V, Prinz C, Meisinger C, Guiard B, Wagner R, Pfanner N, Wiedemann N (2008) Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 132:1011–1024. doi:10.1016/j.cell.2008.01.028

    Article  Google Scholar 

  • Lacomme C, Roby D (1999) Identification of new early markers of the hypersensitive response in Arabidopsis thaliana. FEBS Lett 459:149–153. doi:10.1016/S0014-5793(99)01233-8

    Article  Google Scholar 

  • Lacomme C, Santa Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci 96:7956–7961. doi:10.1073/pnas.96.14.7956

    Article  ADS  Google Scholar 

  • Lee AC, Zizi M, Colombini M (1994) Beta-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6. J Biol Chem 269:30974–30980

    Google Scholar 

  • Li Z-Y, Xu Z-S, He G-Y, Yang G-X, Chen M, Li L-C, Ma Y (2013) The voltage-dependent Anion Channel 1 (AtVDAC1) negatively regulates plant cold responses during germination and seedling development in Arabidopsis and interacts with calcium sensor CBL1. Int J Mol Sci 14:701–713. doi:10.3390/ijms14010701

    Article  Google Scholar 

  • Liu S, Ishikawa H, Tsuyama N, Li F-J, Abroun S, Otsuyama K, Zheng X, Ma Z, Maki Y, Iqbal MS, Obata M, Kawano MM (2006) Increased susceptibility to apoptosis in CD45+ myeloma cells accompanied by the increased expression of VDAC1. Oncogene 25:419–429. doi:10.1038/sj.onc.1208982

    Google Scholar 

  • Love AJ, Milner JJ, Sadanandom A (2008) Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci 13:589–595

    Article  Google Scholar 

  • Mailloux RJ, McBride SL, Harper M-E (2013) Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38:592–602. doi:10.1016/j.tibs.2013.09.001

    Article  Google Scholar 

  • Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16:819–830. doi:10.1016/j.molcel.2004.11.014

    Article  Google Scholar 

  • Mannella CA, Bonner WD (1975) X-ray diffraction from oriented outer mitochondrial membranes. Biochim Biophys Acta Biomembr 413:226–233. doi:10.1016/0005-2736(75)90106-6

    Article  Google Scholar 

  • Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, Garin J, Barbier-Brygoo H, Ephritikhine G (2004) Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics 3:675–691

    Article  Google Scholar 

  • McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta Biomembr 1818:1444–1450. doi:10.1016/j.bbamem.2011.10.025

    Article  Google Scholar 

  • Mertins B, Psakis G, Essen L-O (2014) Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane. Biol Chem 395:1435–1442. doi:10.1515/hsz-2014-0203

    Article  Google Scholar 

  • Meyer T, Hölscher C, Schwöppe C, von Schaewen A (2011) Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol. Plant J 66:745–758. doi:10.1111/j.1365-313X.2011.04535.x

    Article  Google Scholar 

  • Mitsuhara I, Malik KA, Miura M, Ohashi Y (1999) Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Curr Biol 9:775–778. doi:10.1016/S0960-9822(99)80341-8

    Article  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591. doi:10.1146/annurev.arplant.52.1.561

    Article  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi:10.1042/BJ20081386

    Article  Google Scholar 

  • Noskov SY, Rostovtseva TK, Bezrukov SM (2013) ATP transport through VDAC and the VDAC–tubulin complex probed by equilibrium and Nonequilibrium MD simulations. Biochemistry 52:9246–9256. doi:10.1021/bi4011495

    Article  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922. doi:10.1007/s10495-007-0756-2

    Article  Google Scholar 

  • Owsianowski E, Walter D, Fahrenkrog B (2008) Negative regulation of apoptosis in yeast. Biochim Biophys Acta, Mol Cell Res 1783:1303–1310. 10.1016/j.bbamcr.2008.03.006

    Article  Google Scholar 

  • Peng S, Blachly-Dyson E, Forte M, Colombini M (1992) Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel. Biophys J 62:123–135

    Article  Google Scholar 

  • Qiao J, Mitsuhara I, Yazaki Y, Sakano K, Gotoh Y, Miura M, Ohashi Y (2002) Enhanced resistance to salt, cold and wound stresses by overproduction of animal cell death suppressors Bcl-xL and Ced-9 in tobacco cells — their possible contribution through improved function of Organella. Plant Cell Physiol 43:992–1005. doi:10.1093/pcp/pcf122

    Article  Google Scholar 

  • Radak Z, Zhao Z, Goto S, Koltai E (2011) Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Mol Asp Med 32:305–315. doi:10.1016/j.mam.2011.10.010

    Article  Google Scholar 

  • Rao RSP, Salvato F, Thal B, Eubel H, Thelen JJ, Møller IM (2016) The proteome of higher plant mitochondria. Mitochondrion In Press. doi:10.1016/j.mito.2016.07.002

    Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and Interorganellar signaling. Plant Physiol 141:357–366. doi:10.1104/pp.106.079129

    Article  Google Scholar 

  • Robert N, D’Erfurth I, Marmagne A, Erhardt M, Allot M, Boivin K, Gissot L, Monachello D, Michaud M, Duchêne A-M, Barbier-Brygoo H, Maréchal-Drouard L, Ephritikhine G, Filleur S (2012) Voltage-dependent-anion-channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria. Plant Mol Biol 78:431–446. doi:10.1007/s11103-012-9874-5

    Article  Google Scholar 

  • Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696. doi:10.1038/sj.onc.1209595

    Article  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (1998) ATP transport through a single VDAC channel, studied by noise analysis. Biophys J 74:A383–A383

    Article  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40:163–170. doi:10.1007/s10863-008-9145-y

    Article  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2012) VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta Biomembr 1818:1526–1535. doi:10.1016/j.bbamem.2011.11.004

    Article  Google Scholar 

  • Rostovtseva TK, Colombini M (1996) ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem 271:28006–28008. doi:10.1074/jbc.271.45.28006

    Article  Google Scholar 

  • Rostovtseva TK, Colombini M (1997) VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J 72:1954–1962. doi:10.1016/S0006-3495(97)78841-6

    Article  Google Scholar 

  • Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M (2002) Dynamics of nucleotides in VDAC channels: structure-specific noise generation. Biophys J 82:193–205. doi:10.1016/S0006-3495(02)75386-1

    Article  Google Scholar 

  • Rostovtseva TK, Tan W, Colombini M (2005) On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 37:129–142. doi:10.1007/s10863-005-6566-8

    Article  Google Scholar 

  • Rostovtseva TK, Kazemi N, Weinrich M, Bezrukov SM (2006) Voltage gating of VDAC is regulated by nonlamellar lipids of mitochondrial membranes. J Biol Chem 281:37496–37506

    Article  Google Scholar 

  • Salinas T, Duchene AM, Delage L, Nilsson S, Glaser E, Zaepfel M, Marechal-Drouard L (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc Natl Acad Sci U S A 103:18362–18367

    Article  ADS  Google Scholar 

  • Salinas T, Duchene AM, Marechal-Drouard L (2008) Recent advances in tRNA mitochondrial import. Trends Biochem 33:320–329

    Article  Google Scholar 

  • Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30:99–120. doi:10.1007/BF01869662

    Article  Google Scholar 

  • Schmid A, Kromer S, Heldt HW, Benz R (1992) Identification of two general diffusion channels in the outer membrane of pea mitochondria. BiochimBiophysActa 1112:174–180. doi:10.1016/0005-2736(92)90389-4

    Google Scholar 

  • Schneider R, Etzkorn M, Giller K, Daebel V, Eisfeld J, Zweckstetter M, Griesinger C, Becker S, Lange A (2010) The native conformation of the human VDAC1 N terminus. Angew Chemie Int Ed 49:1882–1885. doi:10.1002/anie.200906241

    Article  Google Scholar 

  • Schredelseker J, Paz A, Lopez CJ, Altenbach C, Leung CS, Drexler MK, Chen J-N, Hubbell WL, Abramson J (2014) High resolution structure and double electron-electron resonance of the zebrafish voltage-dependent Anion Channel 2 reveal an oligomeric population. J Biol Chem 289:12566–12577. doi:10.1074/jbc.M113.497438

    Article  Google Scholar 

  • Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A (2015) The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J Exp Bot 66:2945–2955. doi:10.1093/jxb/erv146

    Article  Google Scholar 

  • Shanmugavadivu B, Apell HJ, Meins T, Zeth K, Kleinschmidt JH (2007) Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer. J Mol Biol 368:66–78. doi:10.1016/j.jmb.2007.01.066

    Article  Google Scholar 

  • Shao L, Kinnally KW, Mannella CA (1996) Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa. Biophys J 71:778–786. doi:10.1016/S0006-3495(96)79277-9

    Article  Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Asp Med 31:227–285. doi:10.1016/j.mam.2010.03.002

    Article  Google Scholar 

  • Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS (2015) The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta Biomembr 1848:2547–2575. doi:10.1016/j.bbamem.2014.10.040

    Article  Google Scholar 

  • Šileikytė J, Blachly-Dyson E, Sewell R, Carpi A, Menabò R, Di Lisa F, Ricchelli F, Bernardi P, Forte M (2014) Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (translocator protein of 18 kDa (TSPO)). J Biol Chem 289:13769–13781. doi:10.1074/jbc.M114.549634

    Article  Google Scholar 

  • Simamura E, Hirai K-I, Shimada H, Koyama J, Niwa Y, Shimizu S (2006) Furanonaphthoquinones cause apoptosis of cancer cells by inducing the production of reactive oxygen species by the mitochondrial voltage-dependent anion channel. Cancer Biol Ther 5:1523–1529. doi:10.4161/cbt.5.11.3302

    Article  Google Scholar 

  • Smack DP, Colombini M (1985) Voltage-dependent channels found in the membrane fraction of corn mitochondria. Plant Physiol 79:1094–1097

    Article  Google Scholar 

  • Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H (2008) Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol 28:1007–1017. doi:10.1128/MCB.00224-07

    Article  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904. doi:10.1046/j.1365-313X.2002.01474.x

    Article  Google Scholar 

  • Swidzinski JA, Leaver CJ, Sweetlove LJ (2004) A proteomic analysis of plant programmed cell death. Phytochemistry 65:1829–1838. doi:10.1016/j.phytochem.2004.04.020

    Article  Google Scholar 

  • Takahashi Y, Tateda C (2013) The functions of voltage-dependent anion channels in plants. Apoptosis 18:917–924. doi:10.1007/s10495-013-0845-3

    Article  Google Scholar 

  • Tateda C, Yamashita K, Takahashi F, Kusano T, Takahashi Y (2009) Plant voltage-dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax-induced cell death. Plant Cell Rep 28:41–51. doi:10.1007/s00299-008-0630-x

    Article  Google Scholar 

  • Tateda C, Watanabe K, Kusano T, Takahashi Y (2011) Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J Exp Bot 62:4773–4785. doi:10.1093/jxb/err113

    Article  Google Scholar 

  • Tateda C, Kusano T, Takahashi Y (2012) The Arabidopsis voltage-dependent anion channel 2 is required for plant growth. Plant Signal Behav 7:31–33. doi:10.4161/psb.7.1.18394

    Article  Google Scholar 

  • Tikunov A, Johnson CB, Pediaditakis P, Markevich N, Macdonald JM, Lemasters JJ, Holmuhamedov E (2010) Closure of VDAC causes oxidative stress and accelerates the Ca2+-induced mitochondrial permeability transition in rat liver mitochondria. Arch Biochem Biophys 495:174–181. doi:10.1016/j.abb.2010.01.008

    Article  Google Scholar 

  • Tomasello F, Messina A, Lartigue L, Schembri L, Medina C, Reina S, Thoraval D, Crouzet M, Ichas F, De Pinto V, De Giorgi F (2009) Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Res 19:1363–1376. doi:10.1038/cr.2009.98

    Article  Google Scholar 

  • Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA 105:17742–17747. doi:10.1073/pnas.0809634105

    Article  ADS  Google Scholar 

  • Van Aken O, Van Breusegem F (2015) Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci 20:754–766. doi:10.1016/j.tplants.2015.08.002

    Article  Google Scholar 

  • Vanlerberghe G (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847. doi:10.3390/ijms14046805

    Article  Google Scholar 

  • Vianello A, Casolo V, Petrussa E, Peresson C, Patui S, Bertolini A, Passamonti S, Braidot E, Zancani M (2012) The mitochondrial permeability transition pore (PTP) — an example of multiple molecular exaptation? Biochim Biophys Acta Bioenerg 1817:2072–2086. 10.1016/j.bbabio.2012.06.620

    Article  Google Scholar 

  • Villinger S, Giller K, Bayrhuber M, Lange A, Griesinger C, Becker S, Zweckstetter M (2014) Nucleotide interactions of the human voltage-dependent Anion Channel. J Biol Chem 289:13397–13406. doi:10.1074/jbc.M113.524173

    Article  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395. doi:10.1038/nrg2348

    Article  Google Scholar 

  • Yan J, He H, Tong S, Zhang W, Li X, Yang Y (2009) Voltage-dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2) is involved in ABA-mediated early seedling development. Int J Mol Sci 10:2476–2486. doi:10.3390/ijms10062476

    Article  Google Scholar 

  • Yehezkel G, Hadad N, Zaid H, Sivan S, Shoshan-Barmatz V (2006) Nucleotide-binding sites in the voltage-dependent anion channel – characterization and localization. J Biol Chem 281:5938–5946

    Article  Google Scholar 

  • Yehezkel G, Abu-Hamad S, Shoshan-Barmatz V (2007) An N-terminal nucleotide-binding site in VDAC1: involvement in regulating mitochondrial function. J Cell Physiol 212:551–561

    Article  Google Scholar 

  • Young MJ, Bay DC, Hausner G, Court DA (2007) The evolutionary history of mitochondrial porins. BMC Evol Biol 7:31. doi:10.1186/1471-2148-7-31

    Article  Google Scholar 

  • Zalman LS, Nikaido H, Kagawa Y (1980) Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels. J Biol Chem 255:1771–1774

    Google Scholar 

  • Zambrowicz EB, Colombini M (1993) Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior. Biophys J 65:1093–1100. doi:10.1016/S0006-3495(93)81148-2

    Article  Google Scholar 

  • Zancani M, Casolo V, Petrussa E, Peresson C, Patui S, Bertolini A, De Col V, Braidot E, Boscutti F, Vianello A (2015) The permeability transition in plant mitochondria: the missing link. Front Plant Sci 6:1120. doi:10.3389/fpls.2015.01120

    Article  Google Scholar 

  • Zhang M, Takano T, Liu S, Zhang X (2015) Arabidopsis mitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2. FEBS Lett 589:1207–1213. doi:10.1016/j.febslet.2015.03.034

    Article  Google Scholar 

  • Zizi M, Forte M, Blachly-Dyson E, Colombini M (1994) NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem 269:1614–1616

    Google Scholar 

Download references

Acknowledgments

FH is a research director at the F.R.S.-FNRS (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Homblé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Homblé, F., Kmita, H., Saidani, H., Léonetti, M. (2017). Plant VDAC Permeability: Molecular Basis and Role in Oxidative Stress. In: Rostovtseva, T. (eds) Molecular Basis for Mitochondrial Signaling. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55539-3_7

Download citation

Publish with us

Policies and ethics