Skip to main content

Origin and Evolution of Marine Fungi

  • Chapter
  • First Online:
Fungi in Coastal and Oceanic Marine Ecosystems

Abstract

Osmoheterotrophic mode of nutrition evolved independently in the Kingdom Mycetae and the Kingdom Straminipila. The Kingdom Mycetae and the Kingdom Metazoa share a common ancestor. The Kingdom Mycetae and its closest relatives, the ARM group, are most closely related to nucleariids, a group of single-celled opisthokont amoeboid protists. Mycetaen fungi probably evolved from a phagotrophic life style around 760 Mya–1.06 Bya. There is still a large uncertainty whether the fungi originated and underwent divergence in the sea, much, or on land. An association of a fungus with a phototroph helped establishment of eukaryotes on land. Marine ascomycetes arose through several independent migrations of terrestrial and freshwater ascomycetes to the sea. At least three lineages of the Basidiomycota migrated from freshwater and terrestrial to the marine ecosystem. The monophyletic Kingdom Straminipila and the sister clade alveolates shared a common ancestor, which was a mixotroph with photosynthetic and phagotrophic nutrition. Osmoheterotrophy of the three groups of fungi among Straminipila, Oomycetes, Hyphochytriomycetes, and Labyrinthulomyces evolved independently of each other. All three groups appear to have originated in the sea.

It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is most adaptable to change.

Charles Darwin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SCC, Willcock S, Richards TAA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beakes GW, Honda D, Thines M (2014) Systematics of the straminipila: labyrinthulomycota, hyphochytriomycota, and oomycota. In: McLaughlin DJ, Spatafora JW (eds) The Mycota VII. Part A. Systematics and evolution, 2nd edn. Springer, Berlin, Heidelberg, pp 39–96

    Google Scholar 

  • Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71:1114–1127

    Article  Google Scholar 

  • Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi – how close are we? Fungal Biol Rev 24:1–16

    Article  Google Scholar 

  • Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary relationships of Mycaureola dilseae (Agaricales), a basidiomycetes pathogen of a subtidal Rhodophyte. Am J Bot 93:547–556

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (2004) Only six kingdoms of life. Proc R Soc Lond B 271:1251–1262

    Article  CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE (2006) Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J Mol Evol 62:388–420

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP, Chao EE (1994) Thraustochytrids are chromists, not fungi: 18S rDNA signatures of heterokonta. Philos Trans R Soc Lond Ser B Biol Sci 346:387–397

    Article  CAS  Google Scholar 

  • Gleason FH, Frithjof CK, Glöckling SL (2012a) Zoosporic true fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin/Boston, pp 101–114

    Google Scholar 

  • Gleason FH, Carney LT, Lilje O, Glockling SL (2012b) Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecol 5:651–656

    Article  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1131

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M (2001) Evolution of marine mushrooms. Biol Bull 201:319–322

    Article  CAS  PubMed  Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647

    Article  CAS  PubMed  Google Scholar 

  • James TY, Kauff F, Schoch C, Matheny PB, Hoffstetter V, Cox C, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  • James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23:1548–1553

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Elsevier, London, pp 301–324

    Chapter  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  CAS  PubMed  Google Scholar 

  • Karpov S, Mamkaeva MA, Aleoshin V, Nassonova E, Lilje O, Gleason FH (2014) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 99–210

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kohlmeyer J, Spatafora JA, Volkmann-Kohlmeyer B (2000) Lulworthiales, a new order of marine ascomycota. Mycologia 92:453–458

    Article  Google Scholar 

  • Lara E, Moreira D, López-Garcia P (2010) The environmental clade LKM11 and Rozella form the deepest branchingclade of Fungi. Protist 161:116–121

    Article  CAS  PubMed  Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT (2009) Fungi evolved right on track. Mycologia 101:810–822

    Article  PubMed  Google Scholar 

  • Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341:69–78

    Article  CAS  PubMed  Google Scholar 

  • Müller WEG (2003) The origin of metazoan complexity: porifera as integrated animals. Integr Comp Biol 43:3–10

    Article  PubMed  Google Scholar 

  • Pang KL (2012) Phylogeny of the marine Sordariomycetes. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 35–47

    Google Scholar 

  • Pinruan U, Jones EBG, Hyde KD (2002) Aquatic fungi from peat swamp palms: Jahnula appendiculata sp. Nova Sydowia 54:242–247

    Google Scholar 

  • Raghukumar S (1992) Bacterivory: a novel dual role for thrausochytrids in the sea. Mar Biol 113:165–169

    Article  Google Scholar 

  • Riisberg I, Orr RJ, Kluge R, Shalchian-Tabrizi K, Bowers HA, Patil V, Edvardsen B, Jakobsen KS (2009) Seven gene phylogeny of heterokonts. Protist 160:191–204

    Article  CAS  PubMed  Google Scholar 

  • Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999) Genera of bionectriaceae, hypocreaceae and nectriaceae (hypocreales, ascomycetes). Stud Mycol 42:3–238

    Google Scholar 

  • Sakayaroj J, Pang KL, Jones EBG, Vrijmoed LLP, Abdel-Wahab MA (2005) A systematic reassessment of marine ascomycetes Swampomyces and Torpedospora. Bot Mar 48:395–406

    Article  Google Scholar 

  • Sakayaroj J, Pang KL, Jones EBG (2011) Multi-gene phylogeny of the Halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Divers 46:87–109

    Article  Google Scholar 

  • Schoch CL, Sung GH, Volkmann-Kohlmeyer B, Kohlmeyer J, Spatafora JW (2006) Marine fungal lineages in the Hypocreomycetidae. Mycol Res 110:257–263

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Sung GH, Volkmann-Kohlmeyer B, Kohlmeyer J, Spatafora JW (2007) Marine fungal lineages in the Hypocreomycetidae. Mycol Res 111:154–162

    Article  PubMed  Google Scholar 

  • Spatafora J, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    Article  CAS  PubMed  Google Scholar 

  • Stentiford GD, Feist FW, Stone DM, Bateman KS, Dunn AM (2013) Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems. Trends Parasitol 11:567–578

    Article  Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsui CKM, Vrijmoed LLP (2012) A re-visit to the evolution and ecophysiology of the Labyrinthulomycetes. In: Cruzado DA (ed) Marine ecosystems. InTech, Rijeka, pp 161–176

    Google Scholar 

  • Tsui CKM, Marshall W, Yokoyama R, Honda D, Lippmeier JC, Craven KD, Peterson PD, Berbee ML (2009) Labyrinthulomycetes phylogeny and its implication for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phylogenet Evol 50:129–140

    Article  CAS  PubMed  Google Scholar 

  • Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390

    Google Scholar 

  • Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

  • Yokoyama R, Salleh B, Honda D (2007) Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen nov. Mycoscience 48:329–341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raghukumar, S. (2017). Origin and Evolution of Marine Fungi. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-54304-8_14

Download citation

Publish with us

Policies and ethics